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ABSTRACT 

The state of the art of numerical modeling of thermohydrologic 

flow in fractured rock masses is reviewed and a comparative study is 

made of several models which have been developed in nuclear waste 

isolation, geothermal energy, ground~water hydrology, petroleum engi~ 

neering, and other geologic fields. The general review is followed 

by separate summaries of the main characteristics of the governing 

equations, numerical solutions, computer codes, validations, and 

applications for each model. 
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INTRODUCTION 

This is a review of the state of the art of numerical modeling of thermo~ 

hydrologic flow in fractured rock masses. The motivation for this study comes 

from the recent interest in the possibility of isolating nuclear waste mater~ 

ials in hard rock formations. During the last several years, a number of 

numerical models have been developed for generic studies of nuclear waste 

repositories. The capability of modeling subsurface fluid flow has also been 

extensively developed in ground~water hydrology, petroleum engineering, and 

other geologic fields. More recently, the interest in geothermal energy has 

contributed to the rapid advancement of this capability, especially in model­

ing nonisothermal flows. Although the focus of each field is different, some 

of the models in these fields can be adapted to the study of various thermohy­

drologic processes associated with waste repositories in hard rock formations. 

This study, sponsored by the Office of Nuclear Waste Isolation, u. s. Depart­

ment of Energy, reviews a variety of these models. 

Two features of this study are emphasized: 

(1) Modeling of thermohydrologic processes, and 

(2) Modeling of fractured rock masses. 

The goal of the former is to understand the nonisothermal phenomena 

induced by the heat released by the nuclear wastes. The heat will raise the 

formation temperature and induce buoyancy flow through the rock mass surround­

ing a nuclear waste repository. The modeling of these thermohydrologic per­

turbations is important to the study of the potential hazard of radionuclides 
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being carried by the buoyant water to the biosphere. The temperature and 

pressure changes also affect the stress field in the rock and the mechanical 

stability of the repository structure. 

The treatment of fractured rock masses--the second aspect of this review-­

tends to be either completely discrete, taking into account the detailed 

distribution of a few fracturesu or completely random, using a continuum to 

represent the spatial average of fractures. An extension of the continuum 

approach is the double-porosity concept with two overlapping continua, one 

representing the fractures and another, the porous-medium blocks. The choice 

among the discrete, double-porosity, and porous-medium models depends not only 

on the characteristics of the fracture network, the size of the region, and 

the physical processes of interest but also on the availability of data and 

the limitation of the computational capability. For near-field simulation, it 

may be necessary to model the detailed fluid movement in order to understand 

the radionuclide transport, the thermal convection, and the rock displacement 

in the fracture network. For far-field phenomena, it may be sufficient to 

model the average behavior of fluid flow in the rock mass. 

The present work is an attempt to bring together and to review the rele­

vant models from different fields in order to evaluate the modeling capabili­

ties for thermohydrologic flow in fractured rock masses. On the basis of a 

comprehensive literature survey and the communications with many model devel­

opers and with the Office of Nuclear Waste Isolation of the u. s. Department 

of Energy, several major models are selected for detailed review to bring out 
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their strengths, methods of approach, and other characteristics. These models 

are: ROCMAS, 'I'RUST~TERZAGI, CCC, the model of Duguid, the model of O'Neill, 

GWTHERM, FINI, CFEST-FE3DGW, SWIFT, the model of Coats, the model of Faust and 

Mercer, MUSHru~, and SHAFT79. Table 1 lists their recent developers and their 

main characteristics. The selection is somewhat arbitrary and limited, but we 

hope that this review includes most of the main characteristics of other major 

models relevant to the study of thermohydrologic flow in fractured rock masses. 

It is generally true that no one numerical model is able to solve all 

problems of thermohydrologic flow in fractured rock masses. Identification 

of the special features of each model may be important in selecting the most 

appropriate model for any given requirement. In the following section the 

characteristics of the models selected for study in this report are compared 

and discussed. Tables are given to compare and highlight the key features of 

interest. 

After the general review, each model is summarized separately. The 

sections on each individual model are independent of the comparative study so 

that all information will be clearly identifiable and is easily accessible. 

Both the comparative review and the individual summary sections are written 

in similiar format, with subsections on governing equations, numerical methods, 

computer codes, validations, and applications. 

The comparative review provides general information about the different 

models, and the individual summaries identify the specific characteristics of 

each model. This report is intended to serve both as a practical review of 
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the state of the art of thermohydrologic and fracture flow modeling and as a 

source of information for use in future developments in this important field 

of study. 

Many experts, including most of the developers of the models discussed 

herein attended a workshop held at Lawrence Berkeley Laboratory, February 19-

20, 1980, on the subject of modeling fractured rock masses. The proceedings 

of the workshop contain the contributions from the modelers (Lawrence Berkeley 

Laboratory, 1980). 
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Table 1. Models Analyzed in the Present Study 

Model 

TRUST 
TERZAGI 

CCC 

Duguid 

0 1 Neill 

GWTHERM 

FINI 

CFEST 
FE3DGW 

SWIFT 

Coats 

Faust­
Mercer 

liiJUSHRM 

SHAF'l'7 

Current Development 

UCB 

·r. Narasimhan, LBL 

J. Duguid, ONWI 

K. 0 1 Neill, CRRE 
A. Shapiro, Princeton 

A. Runchal, ACR 

A. Burgess, Acres 

S. Gupta, BPNL 

s. Pahwa, Intera 

K. Coats, Intercomp 

c. Faust, 
J. Mercer, Geotrans 

J. Pritchett, 

' s3 

, LBL 

Main Characteristics 

Stress~flow~(heat), fracture-porous, 
2~D, FE. hydrology, geotechnical 

Saturated~unsaturated flow~consolidation, 

3-D, IFD. hydrology, soil mechanics 

Flow-heat~consolidation, 3-D, IFD. geo~ 

thermal, aquifer storage, waste isolation 

Flow, double-porosity, 2-D, FE. 
hydrology 

Flow-heat, double-porosity, 3-D, FE. 
geothermal 

Flow-heat~(transport), 2-D, IFD. 
waste isolation 

Flow-heat, 2-D, FE. 
waste isolation 

Flmv-heat-solute, 3-D, FE. 
hydrology, waste isolation 

Flow-heat-solute-(transport), 3-D, FD. 
waste isolation 

Flow-heat, two~phase, 3-D, FD. 
geothermal, petroleum 

Flow-heat, two-phase, 3~D, FD. 
geothermal 

, 3-D, IFD. 
isolation 
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COMPARATIVE REVIEW 

This section discusses the different approaches and approximations used 

in the models listed in Table 1. The characteristics of the models are re­

viewed under the following five headings: 

I. Governing Equations, 

II. Numerical Solutions, 

III. Computer Codes, 

IV. Validations, and 

v. Applications. 

We have used tables to compare different choices of key elements adopted 

by these models. This section also discusses some of the general considera­

tions in modeling thermohydrologic flow in fractured rock. More detailed 

description of the models can be found in the next sectionu which includes 

individual summaries of each model. 
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I. GOVERNING EQUATIONS 

The state of ground water flowing through the fractures and pores is 

described by the velocity v and any two thermodynamic quantities pertaining to 

the fluid--for instance, the pressure P and the temperature T. The fluid 

velocity v within the fractures and pores is of particular interest in deter-

mining the convective transport and dispersion of radionuclides. In the con~ 

tinuum approximations used to model average behavior, the microscopic velocity 

v within individual fractures or pores is related to the macroscopic velocity 

q averaged over the rock mass by: 

v 
q 

-.~, 

ljl 

where ~ is the porosity. For discrete modeling of fluid flow within a frac-

ture, v "' q , with q> "' 1. In most thermohydrologic models, the velocity is a 

derived quantity determined by the pressure and temperature distributions. 

The equations governing pressure and temperature are based on mass and energy 

conservation laws. The choice of pressure and temperature as variables de-

scribing the state of a fluid is arbitrary. All thermodynamic quantities are 

determined by the values of any two of them, together with the equation of 

state. Density pw, internal energy u, enthalpy H, and others can also be used 

to determine the state of fluid flow and heat transfer. 

This section discusses and compares the equations describing fluid veloc-

ity and the conservation laws of mass and energy used in the different models. 



8 

Fluid Velocity 

The flux of fluid q flowing relative to the solid rock is determined by 

the permeability of the formation k, the viscosity of the fluid ~~ and the 

driving forces of pressure gradient VP and gravitational body force pwg: 

q "" 
k W= 

• ( VP - p g). 
~ 

This is the familiar Darcy 1 s law for the equation of motion. Darcy's law is 

an approximation of the general Navier-Stokes equation for momentum conser-

vation. 

"" Permeability k is one of the most important hydraulic properties of the 

formation. In discrete modeling, the most frequently used approximation for 

fracture permeability is the parallel-plate model. The steady laminar flow 

between two parallel plates may be described by Darcy's equation with a dis-

crete fracture permeability: 

=-
12 

where b is the aperture of the parallel-plate flow path. The total flux 

through the cross section of aperture b and unit width is then proportional 

to b 3 (Witherspoon and others, 1980 and references therein). As a result of 

the b 3 nonlinear dependence of the flux, the fracture flow is sensitive to the 

displacement of the fracture surfaces induced by pressure changes in the fluid 

and stress changes in the rock blocks. The smooth parallel plate is an ideal-

ization of a real fracture. The surface roughness, asperity contact, and 

infill material may retard the flow and reduce the permeabilityo The texture 
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of the fracture surfaces also controls the mechanical behavior of a fracture. 

The fracture varies nonlinearly with normal and shear stresses. 

Fracture permeability is one of the most difficult parameters to be measured 

(Brace 1980). 

For large~scale modeling of a highly fractured rock mass, it is unrealis~ 

tic to model all its fractures. In analogy to the porous medium, an equivalent 

permeability for the representation of the fractured rock mass may be defined 

over a large enough representative elementary volume. To date the equivalent 

permeability tensor can be constructed only for simple geometric models of 

fracture sets. For a set of parallel fractures with spacing 8, the equivalent 

permeability is given by 

128 ' 

and the corresponding porosity is b/8. In 1 if sufficient data are 

available on the distributions of apertures, spacings, orientations, areal 

extent, and other fracture parameters, a statistical treatment will be neces~ 

sa.ry to derive the anisotropic permeability tensor. Although each individual 

fracture is highly permeable, the total permeability depends, among other fac~ 

tors, on the connectivity of the fracture network and may turn out to be small. 

The porosity ~ is by definition the ratio of the void space to the total 

volume of a rock mass specimen. Only a small fraction of the void spaces in 

a fractured rock mass are continuous fracture flow paths that contribute to 

the permeability. Most of the other void spaces are disconnected fractures, 

isolated voids, and microcracks which are not for fluid flow (Norton and 
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Knapp 1977). The no-flow porosity may be important for the storage of fluid 

and for the diffusive transfer of radionuclides. It is, however, very diffi-

cult to distinguish quantitatively between the flow and no-flow porosity. The 

determination of the porosities is very important for the use of continuum 

models in the evaluation of the fluid velocity v, which is related to the Darcy 

velocity q by v = q/~· There may be a difference of several orders of magni-

tude in v = q/$ if the total porosity, instead of the flow porosity, is used. 

In the double-porosity approximations, the equivalent continuum for the 

fractures and the equivalent continuum for the primary pores in the porous-

medium blocks are treated as two overlapping systems. It is frequently assumed 

in double-porosity models that the equivalent fracture permeability kf is much 

larger than the porous medium permeability km while the fracture porosity ~f 

is much smaller than the porous medium porosity ~m. In the thermodynamic de-

scription of a double-porosity medium, each point in space is characterized by 

f m f m 
two pressures, P , P , and/or two temperatures, T , T • The total pressure at 

a point is the sum of the two pressures: P = Pf + Pm (Duguid and Lee 1977). 

The temperature at a point is related to the two temperatures by the weighted 

average: T = (~fTf + ~mTm)/(~f + ~m) (O'Neill 1978). 

Depending on the detail required for modeling, either the discrete frac­

ture permeability kd is used for small fracture grid blocks, or the equivalent 

continuum permeability kf (or km) is used for large continuum grid blocks. The 

more detail required, the greater is the computational effort. The complexity 

of a model also depends on the couplings among the different processes through 



the permeability functions. For the models reviewed, one of the following 

approximations for the treatment of permeability is used: 

(a) The permeability is independent of the variables (pressure, temperature, 

stress, etc.) and is treated as an input parameter for each grid block. 

(b) The permeability is a function of pressure and temperature, k(P,T). The 

pressure change affects the effective stress cru = ON ~ P acting across 

the fracture surfaces. The normal stress cr is given and remains con~ 
N 

stant, so ~o' = ~~P. An aperture~effective stress relationship b(0 1
) and 

d 2 . 
a permeability~aperture formula (tor example, k b /12) may be used to 

calculate the permeability as the pressure changes. The permeability~ 

temperature dependance may also be important, to take into account the 

effects of thermal stress and thermally induced rock-fluid interactions. 

(c) The permeability is also a function of stress, k(O). In addition to the 

pressure and temperature field, the tensor stress field is modeled. 

The stress changes may be induced by hydraulic, mechanical, or thermal 

loading. The effective stress-displacement calculations and/or the 

thermomechanical calculations are used to determine the dependence of 

permeability on these variables. 

The fluid velocity is inversely proportional to the dynamic viscosity ~. 

The following are approximations for lJ in the different models: 

(a) The viscosity is a constant. 'I'his is the case for isothermal saturated 

flow. The constant viscosity l1 is frequently combined with the permea~ 
0 
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bility as one lumped parameter, the hydraulic conductivity: 

w kP g 
0 

\10 

(b) The viscosity is a function of temperature )l(T). Most of the noniso-

thermal saturated flow models use formulas or tables to account for this 

dependence. 

(c) Under two-phase conditions, the effects of viscosity is modified by the 

(a.) 

relative permeabilities, which are mainly functions of fluid saturation s. 

In two-phase flow, the total flux has the liquid component £ and the vapor 

component v. a a Each component is then proportional to k /11 , a = ~~ v. 

a a The relative permeabilities, k (S ) ~ 1, account for the reduction of the 
r 

flux and \la is defined as the viscosity for each component. 

The fluid flow is proportional to the driving force or gradient. The 

are approximations used in the models: 

w-The variation in the gravitational force p g is neglected. This is a 

good approximation for slightly compressible flow when the liquid density 

variation with pressure is small. For some of the saturated-flow models, 

the hydrostatic pressure is subtracted from the fluid pressure and the 

driving force is 

hydraulic head h: 

P' = P(r 1 t) = P (z) 
0 

in terms of the incremental pressure P' or the 

w 
~P+p0 gz 

w 
p - p gD, 

0 



and 

dP 1 

w 
p (p! )g 

13 

+ z 

h is the pressure head component of h. 
p 

+ z. 

(b) The Boussinesq approximation is used for t~e gravitational force imbalance 

(buoyancy) between hot and cold water. The buoyancy force is 

where the thermal expansivity I); is assumed to be constant. The density 

variation with temperature is considered only in the buoyancy force and 

is neglected in other terms of the governing equations. 

(c) The driving forces are the pressure gradient and the gravitational body 

w~ 

force, VP - p g, for nonisothermal, saturated flow. 

(d) For flow, the of liquid and the density of vapor are 

a,_. 
di fferen·t. The driving force for each phase is Vp •• P g, a = Jl,, v. Both 

have pressure. 

(e) Vp
a a.-. 

The driving force for each phase is - P g , The pressure 

difference bet:ween the phases, or the 

is taken into account. 

(f) The inertial force is included. Darcyus equation represents the balance 

of the viscous dragging force ~~/k with the pressure gradient Vp and 
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the gravitational body force pwg but neglects the inertial force or 

acceleration pwav;ot. The latter force is important for regions where 

the flow velocity is highly varying, for example, within large fractures 

near a wellbore. At high velocity, transition from laminar flow to 

turbulent flow may also occur. The pressure loss in a turbulent region 

will reduce the effective driving force. 

Table 2 compares the approximations for the permeability of the formation, 

the viscosity of the fluid, and the driving force used in the models for deter­

mining the fluid velocity. 
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Table 2. Fluid Velocity: 

k 
q • (driving force per unit volume) 

11 

Model Permeability Viscosity 

-
ROCMAS kd(o'>, km (c) 1/JJ 

0 

k(cr') TERZAGI (b) 1/JJ 
0 

CCC k(cr' ,T) (b) 1/)l(T) 

Duguid 
-f km (a) 1 Ill k ' 0 

O'Neill 
-i 
k (a) 1/ll(T) 

GWTHERM KF (a) ll /ll(T) 
0 

FINI KF (a) ll /ll(T) 
0 

CFEST K (a) ll /ll(T) 
F 0 

S\HFT k (a) 1/ll(T,C) 

a a 
COATS k (a) k (S)/J.! (T) 

r 

k (a) ka(S)/lla(T) Faust-Mercer 
r 

k(P -P,T) (a) I a a 
MUSHRM k (S)/ll (T) 

c I r 
~ 

k (a) 
a 

SHAF'r79 (k /]J) (p,U) 
r 

-
KF • (hydraulic 

Driving Force or Gradient 

(a) 1/p (a) 

(a) 
w 

p gV(z+h ) 
p 

(a) 

(b) 1/p ~ w-p g (c) 

(a) pw ( <1qjdt)+'VP' i i=f,m 
(a) 
(f) 

(b) 1/pl ' i = f, m (a) 

(b) llh + (Pw/Pw- 1)~ (b) 
0 

Vh - Sw (T 
A 

(b) ~ T )z (b) 
T 0 

(b) 'ilh (c) 

(b) Vp -
w-

p g (c) 

(c) 
a a-

a = Jl,, v Vp - p g, (e) 

(c) Vp -
a-

a = Jl,, v (d) jJ g, 

(c) Vp -
a-

a = il,, (d) p g, v 

(c) 1/p -
a-

a = !1-, v (d) p g, 
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Fluid Flow 

The governing equation for the fluid flow is based on the conservation of 

fluid mass, or equivalently, the balance of the rate of change, the flux, and 

the prescribed source/sink of fluid mass: 

This equation of continuity, combined with Darcy's equation for q, determines 

the pressure field. It is applicable either to a fracture with ~ ~ 1 or to a 

porous medium with~ « 1. The variation of the porosity of the formation 

and the variation of the density of the fluid determine the transient term 

In the models reviewed 8 one of the following approximations for the poros-

ity change ~~ is used. 

0 for constant porosity. 

(b) ~~ is linear in pressure change, ~~ = S~~p ( = S~~hp)• The compressibil­

ity of pores ~p (or ~p) is assumed to be constant. 
p h 

(c) b~ is nonlinear in pressure change. The porosity or the void ratio is a 

nonlinear function of the effective stress, o 1 = 

stress oN is given and remains constant. 

o - P, but the normal 
N 

(d) ~~ is coupled to the stress-strain changes. The pressure change affects 

the stress field of the rock blocks, causing a strain, which in turn 

affects the porosity. 
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The density of the fluid pw will also change in response to pressure and 

temperature changes. The approximations for the density change 8pw are: 

(a) 8pw = 0 for incompressible flow with constant density. 

(b) 8pw is linear in pressure change, 8pw= 6;pw8P, for slightly compressible, 

isothermal flow. The compressibility of water s; is assmned to be 

constant. 

(c) pw is slightly compressible with pressure increase and expandable with 

The fluid compressibility -

s; and the thermal expansivity s; are assumed to be constants for noniso­

thermal, saturated flow. For a fluid with dissolved substances 1 pw can 

also change with concentration c. 

(d) p is a nonlinear function of pressure and temperature. 

(e) For a liquid-vapor mixture 1 the density is p = s1p1 + Svpv, with the 

saturations related by s1+ Sv = 1. Steam tables or nonlinear formulas 

are required to evaluate the sensitive changes of density. On the 

diagram, the nonlinearity of the fluid properties is most evident in the 

vicinity of the saturation line at which the variables change slope. 

Under two-phase conditions 1 the temperature is determined by the pressure, 

T ~ T
8

(P), and the saturation can be treated as a variable instead of the 

temperature. In some two-phase models, the density itself is treated as 

a primary variable. 
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The approximations for ~~ and ~Pw in the different models are compared in 

Table 3. For some saturated flow models, the transient term ()(qJpw)/ot in the 

fluid flow equation is expressed in terms of constant total compressibility of 

the formation or the coefficient of specific storage Ss: 

w 
3(¢p ) 

at 
"w ':I s " W (ldl an W p (lP + , WCI.W ~ _ ___! ~ 

p tt + ~ at- = p bp it ~p ~p ~t - ·g- at 
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Table 3. Fluid Flow Equation: 
a w w~ at ( <PP ) + v • c P q) 

Model Porosity Change Density Change 

~<cr') (d) i::;p 
w ww 

(b) ROCMAS = Spp f1P 

( 1 ~ <p)a IJ.P TERZAGI IJ.q> "" v 
IJ.p 

w !) w w. 
pp L1P (b) 

(c) 

CCC a = - oe/iJO I u cr' = v 
w 

T) (d) aN - p p (P' formula 

i i ~ji3wl1P'j i i w i w w w 
Duguid IJ.<jl = <jl - (1-<jJ )!ji t3 c,po IJ.p = PPP fj,p'' i,j = f,m (b) 

p 
P (a) 

0° Neill bpilP (b) 
w 

13wpw£1.p (3wp v'llT (c) Llcp = t;,p = -p p T 

w w s IJ.h (b) GWTHERM [\.(<pp ) = p 
s 

w w 
FINI fl.(q>p ) "' fJ s Llh (b) 

s 

bpLlh (b) 
w W W .W W 

(c) CF'EST [j,<P - Llp = f3 p ilh -p p Ll'r+a LlC h p h P T C 
.. 

SPLlP (b) 
w pwpwt;,p w 

L~.'r+a b.C (c) SWIF'I' = b.p = -1:$ p p p T c 
... ~ 

i:lb.P (b) p(P,S) 
a 

COA'rS = table, P (P,r) formula p 
(e) 

Fa us ·~ !.)pb.P 
p (b) p(P,H) formula (e) 

\ 
<jl(P ~P,T) MUSHRM (b) p,U packages (e) 

c 

SHAF'r79 = .Pt;,p pp (b) p,U table (e) 
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Heat Transfer Equation 

The governing equation for the heat transfer through the formation is 

based on the conservation of energy: 

m 
a ( p u ) + " • ( w- ) - 'II • -at v p qH - v KH • 'i/T = QH • 

The conservation of energy is expressed in terms of the rate of change of in-

ternal energy U of the fluid-rock mixture, the convective flux of enthalpy H 

of the fluid, the diffusive flux (conduction and/or dispersion) driven by the 

temperature gradient, and the heat source/sink Q • For single-phase models, 
H 

the thermodynamic functions U and H are usually expressed in terms of tempera-

ture and/or pressure. Under two-phase conditions, steam tables or formulas are 

required to evaluate the nonlinear changes of U and H, together with the den-

sity p and other fluid properties. Some of the two-phase models use U or H as 

a primary variable. 

For the transient internal energy accumulation term, (l(pmU)/(lt, the dif-

ferent expressions used in the models are: 

(a) 
m aT m 

CHat' with a constant bulk heat capacity CH 
m m = p c ) for the fluid-rock 

mixture. 

(b) 
w w r r (lT w w r r 

[~~ c + (1-~)p c ] at' where p c is the heat capacity of fluid and p c 

is the heat capacity of the rock. 

(c) 
{;j rr a Ji,Ji,JI, vvv rr at [~pU + (1-~)p c T] =at [~S p U + ~s p U + (1-~)p c T] for two-phase 

flow. 
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for two-phase flow. The enthalphy H is related to the internal energy U 

by the definition H = U + P/p. The pressure term due to compressible 

work is usually neglected in the two-phase energy equation. 

The convective flux term can be as: 

(a) 
w- ww- w ww 

CH q • VT or p c q • VT, where CH or p c is the heat capacity of the 

fluid. The heat is carried by the fluid with velocity q. 

(b) 
w-V • (p qH) for saturated flow. 

" • (pl/,q-1/,HJ/, + pvq-vHv) (c) v for two-phase flow. 

(d) 0 • (pl/,q-J/,UJ/, + pvq-vUv) v for two-phase flow. The pressure work has been 

(a) 

(b) 

(c) 

neglected. 

Two approximations are used to describe the diffusive flux: 

V • KTVT for isotopic conduction with a scalar thermal conductivity KT. 

= 
V • K • VT for anisotropic conduction with a tensorial thermal •r 

conductivity KT 

V • (K + K ) • VT for both conduction and dispersion through the for-T TD 

mation. The thermal dispersion depends on the fluctuations of microscopic 

velocities. The dispersive contribution can be regarded as an enhancement 

to heat conduction in the presence of fluid movement. Usually a linear 

relationship is assumed between the components of the dispersivity KTD 

and the components of the microscopic velocity v = q/~. 

Table 4 summarizes the expressions of the heat transfer equation in 

different models. 
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Table 4. Heat Transfer Equation: 

Model 

CFEST 

Coat.s 

r1USHRM 

Heat Accumulation 

(a) 

(b) 

{b) 

R,pR,UJ(,+€jlS v p vUv +( 1-€jl)pr c:/T] 
(c 

( 1~€jl)prcrT] (d) 

:c r 
)p c T] ( c:) 

~pU+( 1-€jl) pr cr'I'] (c) 

Convection Diffusion 
~~--

=I/. K 'VT (a) 
T 

w w-
p c q. V'T (a) ~V' .KT. V'T (b) 

a) -V'.(Ki+Ki ).'VTi(c) 
T TD 

(b) 

w­V'.(p qH) (b) -v. < ).'VT (c) 

(a) 

V'.(pJ<,qR,H~+pvqvHv) = V' • KT V'T (a) 

J/,-f/, ~ v-v v 
-V'. KT '7T V'.(p q u +p q u ) 

(d) 
(a) 
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of Fluid Flow and Heat Transfer 

The fluid flow equation and the heat transfer equation are coupled through 

the fluid velocity q in the flux terms and through the temperature and pressure 

dependences of the fluid properties (pw, !1) and formation properties (k, <jl). 

In most models using Darcy's approximation, the flow velocity equation is sub­

stituted into the fluid flow equation and the heat transfer equation. The 

elimination of q simplifies the set of governing equations for thermohydrologic 

flow to two equations for the pressure and temperature fields. Once these 

fields are determined, the Darcy velocity q or the microscopic fluid velocity 

v is calculated from the pressure gradient, bouyancy force, viscosity, and 

permeability. 

For low-permeability formations, the flow-induced convective transfer and 

the thermal dispersion are less important than the conductive transfer through 

the rock. In this case, the temperature field is independent of the fluid 

flow, and the temperature equation with heat conduction only can be decoupled 

f.rom the pressure equation. However, the fluid flow field depends on the 

temperature field. The heat generated by the wastes affects the fluid flow 

directly through changes of fluid properties and indirectly through changes in 

rock stresses which may alter the permeability and porosity of a formation. 

The complete determination of the fluid flow field requires thermal-hydrologic­

mechanical calculations. For fractured rock masses with very deformable frac­

tures, the couplings may be strong. With the fluid flow field determined, the 

radionuclide transport can be modeled. 
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II. NUMERICAL SOLUTIONS 

Numerical methods are generally required to solve complex equations and 

coupled processes in heterogeneous and anisotropic formations under various 

initial and boundary conditions. In most numerical models, the governing 

equations are approximated by algebraic equations relating unknown variables 

at discrete nodal points and at different time intervals. The governing equa-

tions for thermohydrologic flows have diffusive terms V•(p~/~)·vp and 

w w-
V•KH•VT; a convective term p c q"VT; and storage-capacity terms S

8
(aP/at) and 

c (8Tjat). The accuracy and efficiency of a model depend on the numerical 
H 

approximations for evaluating the spatial gradient V and the time derivative 

a;at and on the solution scheme of the algebraic equations. 

'£his section discusses the general features of numerical methods and 

summarizes the space discretization, time stepping, and equation solver of 

different models. 

The finite~~difference, the integrated finite-difference, and the finite-

element methods are frequently used to approximate the spatial terms in the 

governing The distinctions among the different methods are in the 

numerical approximation of the gradient operator V, in the evaluation of vari-

able-dependeni: coefficients, and in the spatial discretization of the region. 

For the modeling of complex fractured formations, it is important to have the 

capability of handling a large number of nodes with a nonuniform, irregular 

distribution in multidimensional space. 
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(a) Finite-Difference Method 

In most of the finite-difference models, the distribution of nodes is 

regular, with either uniform or nonuniform spacings along orthogonal coordi-

nate systems (x~y-z, r-6-z, ••• ). Surrounding each nodal point there is a 

region bounded by interfaces normal to the coordinate axes; this region is 

called a nodal block, cell, or element. Between two nodes indexed by i, i+1 

in the x-direction, the interface i+1/2 can intersect the x-axis either midway 

between i, i+1, or at other off-center locations. 

For the evaluation of a spatial gradient, the partial differential of a 

variable is directly expressed in terms of the difference between two neigh-

boring nodal values. For example, the x-component of the fluid flux term 

w- w= 
V•(p q) = -V•(p k/~)·vP is approximated at node i by 

w w 
(p qx)i+1/2 - (p qx)i-1/2 

xi+1/2 - 1/2 

w and the 3pj3x in P ~ at the interface i±1j2 is further approximated by 

With these two steps, the nodal value P. is algebraically related to its two 
~ 

neighboring values for a one-dimensional problem or six neighbors in a three-

dimensional problem. The coefficients at the interfaces i /2 can be evaluated 

as the arithmetic mean, for example: 

(~) 
2 
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or as the harmonic mean, for example: 

approximations can be generalized for an irregular grid. For example, the 

factor 1/2 in the arithmetic mean can be replaced by other fractional weight~ 

ing factors; the ~x. in the harmonic mean can be replaced by the normal dis~ J. 

tance from the node to the interface between the neighboring nodes if the 

neighboring nodes are not along the coordinates in an irregular grid system. 

. . w w~ " For the fJ.rst~order convectJ.ve term P c q•vT in the heat transfer equa~ 

tion, the central difference in space, or central weighting, 

T. 1 J.+ 

with Ti±1/ 2 = 0.5(Ti±1 + Ti) can be used for oTjox. With this central weight~ 

ing scheme, the space truncation approximation of the convective term is 

correct 'co ·the second order. However, there is a tendency for the solutions 

~:vi th central to oscillate arUficially at high flow velocity. The 

convective flux associated with the flow velocity q carries heat downstream; 

a nodal point between an upstream and a downstream node will have temperature 

closer to the upst:ream value. The central weighting scheme does not take into 

account this convective effec'c. In the upstream weighting scheme, the inter~ 

face temperature is set equal to the upstream value, that is, •ri+
1
/

2 
= Ti+

1 
if 

fluid flows from i+1 to i. In other words, a backward difference, T. 
1 

~ T., 
J.+ J. 

is used for the convective term at node i. The upstream weighting is also 
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frequently used in the evaluation of the relative permeability ka and the en~ 
r 

a thalphy H in two-phase, vapor~liquid fluid flow models. The upstream weight-

ing eliminates the oscillation but introduces a space-discretization error 

which is virtually equivalent to physical diffusion. The error of numerical 

d::Lffusion in the upstream weighting scheme and the error of numerical oscilla-

tion in the central weighting scheme may be compensated and minimized by using 

the partial upstream weighting T. I =aT. + (1 - a)T. with 0.5 ,.; a~ 1, 
1+1 2 1+1 1 

or the discontinuous weighting with central weighting at low flow velocity and 

upstream weighting at high flow velocity, or other weighting schemes. 

The conductive term V•K "VT in the heat transfer equation, like the 
T 

w= 
V•(p k/~)·vp in the fluid flow equation, is a second-order diffusive term. 

If the dispersivity KTD is added to the thermal conductivity KT, the tempera-

ture equation is coupled to the fluid flow not only in the convective flux but 

also througn the sensitive dependence of KTD on fluid velocity. As the veloc-

i ty changes direction and magnitude, the effective conducti vi ty-dispersi vi ty 

~D + KT changes. These changes complicate the algebraic treatment of the 

diffusive term but may stabilize the numerical oscillation or decrease the 

relative importance of the numerical diffusion. 

(b) Finite-Difference Method 

•rhe integrated finite-difference method is a generalization of the finite-

difference method. In the integrated finite-difference method, the region to 

be modeled is partitioned into arbitrarily shaped polyhedrons. The numerical 

equations are formulated from the integral form of tile governing equations, or 

equivalently, from the conservation laws over each finite volume block. The 
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formulation emphasizes the direct representation of the conservation laws in 

relating the rates of change of mass and energy in each block to the fluid and 

heat fluxes over the interfaces bounding that block (Edwards 1972; Narasimhan 

and Witherspoon 1976). To evaluate the rates of change and the fluxes over 

the boundary surfaces of a volume element, the block volume, surface areas, 

and normal distances from the node to the faces of the polyhedron are required 

and can be treated as input data specified by the modelers. These additional 

input requirements allow the flexibility in the mesh design for irregular grid 

systems. For a regular mesh in orthogonal coordinates, the integrated finite­

difference method is essentially equivalent to the finite-difference method. 

Both methods use the simple finite differencing, or linear interpolation be­

tween neighboring nodal values, in the evaluation of spatial gradients normal 

to the interfaces. 

(c) Finite-Element Method 

Similiar to the integrated finite-difference method, the finite-element 

method also has the flexibility of specifying the distribution of nodes and 

using an irregular mesh to divide the region into elements. However, the 

spatial relationship between the nodes and the volume elements are different 

in the two methods. In the finite-element method, an element is the region 

bounded by curves connecting the nodes. Therefore a node is on the boundary 

of an element instead of within a block as its centroid. Different element 

shapes can be defined. For example, a two-dimensional linear triangular ele­

ment is a triangle with three nodal vertices, a quadrilateral element has four 

corner nodes, and a three-dimensional orthorhombic element has eight corner 

nodes ( Zienkiewicz 1977; Pinder and Gray 1977) • Within a model, different 
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types of elements can be used. The fractures can be treated with special long, 

thin elements while the porous medium blocks can be treated with large triang­

ular or quadrilateral elements. 

The value of a variable within an element is interpolated in terms of the 

values of the variable at the corner nodes. Simple polynomials (linear, quad­

ratic, or cubic) are frequently used as linear independent basis functions for 

the interpolation. For linear interpolation, the values at the corner nodes 

are sufficient to define the basis functions for the interpolation. For quad­

ratic or cubic interpolations, the basis functions are specified with either 

the values at additional side nodes or the values of the partial derivatives 

of the variable at the corner nodes. For example, the three-dimensional her­

mite interpolation functions are a set of four cubic polynomials defined by 

the value and its three partial derivatives at each corner node. 

The finite-element numerical equations are usually formulated with either 

the Galerkin scheme or the variational approach. In the Galerkin finite-ele­

ment scheme, a trial solution with basis function int.erpolation is substituted 

into the differential equations. The space-differential operators operate on 

the basis functions. The residue of the trial solutions is integrated over the. 

element we1.ghted by the basis functions. The integration is usually carried 

out using two- or three-point Gaussian integration for each dimension. If the 

trial solution is expanded in terms of a complete set of an infinite number of 

linearly independent functions in the elements, the trial solution is exact 

and the residue would vanish. In the Galerkin weighted residual method, the 

number of basis functions is finite and the residue is forced to be zero by 
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requiring the orthogonality of the residue to the same set of basis functions 

used in the expansion of the trial solution. For the convective terms, the 

problems of numerical oscillation and numerical diffusion also exist in the 

finite-element method. Upstream basis functions can be used. 

An equivalent expression of the governing partial differential equations 

can be given in terms of variation of functionals. A functional is an inte­

gral over space with the integrand bilinear in the variable basis functions. 

Upon variational operation on a functional, the corresponding differential 

equations emerge. The variational approach for fluid flow is based on the 

same minimum energy principle or Lagrangian formulation as that used to study 

the equilibrium states in mechanics or stress analysis. In the variational 

approach to the finite-element method, the trial solutions, as expansions in 

basis functions, are substituted into the functional integrals. The differen­

tial operators in the functional integrals operate on the basis functions in 

a manner similar to that in the weighted residual procedure of the Galerkin 

formulation. 

With the use of the Gaussian algorithm for element integration, the co­

efficients, such as pwk/~ in the pressure equation and pwcwq in the tempera­

ture convection term, are evaluated at the Gaussian points within an element. 

This is different from the finite-difference method with the coefficients 

calculated at the interfaces between blocks. The finite-element method, with 

the use of the basis function interpolation over more than two points, can 

evaluate gradients in both normal and tangential directions and handle tensor­

ial quantities more easily. 
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(d) SEatial AEEroximations in Models 

Table 5 summarizes the dimension, the space discretization method, the 

basic block or element shape, the evaluation of the coefficient, and the up­

stream weighting of different models. 
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Table 5. Spatial Approximations 

Model Method Shapes Coefficient evaluation 
Upstream 
weighting 

ROCMAS 2D, FE quadrilateral 
(two-node for 
fracture flow) 

TERZAGI 3D, IFD polyhedron Harmonic mean for ku Pw 

CCC 3D, IFD polyhedron Harmonic mean for k, PW /11u KT 0.5 ..; a ..; 1 

Duguid 2D, FE quadrilateral 2x2 Gaussian quadrature 

O'Neill ; 3D, FE orthorhombic 2x2x2 Gaussian quadrature 
hermite basis 3x3x3 for pwk/11 

GWTHERM 2D, FD rectangular Arithmetic mean a = 0.5u 
(x-z, r-z) low q; 

a = 1 • ' 
high q 

FINI 2D, FE triangular, 4 or 7 integration 
quadratic basis points 
(6-node gap for 
fracture) 

CFEST 3D, FE quadrilateral 23 
' 

33, or 53 Gaussian 

SWIFT 3D, FD orthorhombic Arithmetic mean for Pw/llu pwg ~a o.s or 
a = 

coats 3D, FD orthorhombic Harmonic mean for k a for 
arithmetic mean for P /llu pg kru H 

Faust- I 3D, FD orthorhombic Harmonic mean for k, KT a = for 
Mercer arithmetic mean for PulJuT' kr, H 

J:vlUSHRM 3D, FD orthorhombic a = for 
convection 

SHAFT79 : 3D, IFD polyhedron Harmonic mean for k, KT 0.5 ..; a .;,; 

arithmetic mean for p for kr/llu H 
(optional for kr/llu H) 
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Temporal Approximations 

First~order finite difference in time is frequently used to approximate 

the time derivative a;at for the transient rates of change in the governing 

equations. According to the conservation laws or the governing equations, the 

rates of change of mass and energy are balanced by the fluid and heat fluxes 

and the source/sink terms. Before the discussion on the implicit transient 

treatment, nonlinear coefficient evaluation, and coupling equation solution, 

it is of interest to note that the temporal approximations are closely related 

to the spatial methods used in a model. 

In the integrated finite~difference and finite~ifference methods, the 

value of the variable at a given node represents the average of the values 

within the block enclosed by the surrounding interfaces on which the fluxes 

are evaluated. The balance between the rate of accumulation within the block 

and the net flux across the interfaces is explicitly preserved in the numer­

ical equations. In the finite-element method, each element is shared by the 

nodes on the boundary, and each node is surrounded by several elements. 

Although the transient term can be handled easily in the weighted residual 

formulation, the mathematical relationship between the rate of accumulation 

associated with a block and the fluxes evaluated at the Gaussian points in the 

surrounding elements is an indirect representation of the conservation law. 

In the diagonal or lumped-capacity approach, the time derivative in the govern-· 

ing equation is determined independently of the orthogonalization process. 
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(a) 

With either the finite~difference or the finite~element methodu the anal-

ysis of the transient equation results in a system of equations of the matrix 

form: 

where the column if] contains the nodal values of pressureu temperature, or 

other thermodynamic variables. The coefficient matrix (A] contains the coeffi-

cients of the fluid storage or the heat capacity CH associated with the 

time derivative {df/dt}u [B] contains the spatial approximations (finite dif-

ference or finite element) of the fluxes, and {R} contains the known informa-

tion such as source/sink or boundary conditions. 

The first-order temporal finite difference from time t to t+~t is: 

To solve the unknown \f[t+~t from the known solution {f}t' the other terms in 

the governing equations can be interpolated between t+~t and t. With linear 

interpolation, the matrix equation becomes 

For the forward-differencing explicit scheme with interpolation factor A = 0, 

the < f L can be 
l j t+t.t determined by multiplying the matrix equation with 

~t[A]- 1 • The explicit scheme generally requires a minimum of computational 

effort. Howeveru it is only conditionally stable. Usually the implicit 

schemes >vi th the interpolation factor 0.5 ( A ..; 1 are stable. The central 
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differencing Crank-Nicholson scheme (A = 0.5) is accurate in ~t to the second 

order. The backward differencing implicit scheme (A = 1.0) is usually uncon~ 

ditionally stable and is correct in time to the first order. 

(b) Nonlinear Coefficients 

In the above discussion about the implicit schemes, we have not taken in-

to consideration the dependence of the coefficient matrices [A] and [B] on 

time. In general, the fluid storage Ss or the heat capacity CH in [A] and 

tne hydraulic conductivity P~/~u the diffusive coefficients KT + KTD, or the 

w-convective flux~ q in [B), depend on the time-dependent variables. These 

time-dependencies of the coefficients cannot be neglected for the thermohydro-

logic flows which have a sensitive dependence of fluid properties Pw and l..! on 

variables P and T. The formation properties, especially the permeability kd 

of discrete fractures, can also be sensitive functions of P and T. Empirical 

kd(P,T) relationships or hydromechanical and thermomechanical calculations 

may be required to model the large changes of permeability and aperture of 

fractures with thermohydrologic flows. 

In the semi-implicit scheme, the known values of the variables at time t 

are used in the calculations of the coefficients. In a fully implicit scheme, 

the coefficient matrices [A] and [B] are evaluated at t+~t. In the latter 

case, the matrix equation is no longer linear in {f}t+~t' and iterative pro-

cedures are needed to handle these nonlinearities. The Newton-Raphson proce-

dure, or predictor-corrector method, is frequently used. The Newton-Raphson 

procedure involves approximating the nonlinear equations with a first-order 
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Taylor series expansion about an assumed solution. If for each grid block the 

nonlinear set of equations is expressed in vector form as: 

where x is the vector of unknown variables at each grid block, the linearized 

set of equations is: 

[
av(:x) k( k+1_ k) = 0 X. X. , ax. 1 1 

1 

where i sums over the number of unknown variables per equation at each grid 

block. (For example: the number is 14 = 2(1 + 6) for a (P,T) two-variable 

model with a three-dimensional rectangular grid having each grid block connec-

ted to 6 neighbors). The partial derivatives of the nonlinear coefficients 

are calculated at the values of the variables at the old k-th iteration, and 

k+1 k 
the changes in the variables (x. - x.) are solved by the linearized equation. 

1 1 

The iteration proceeds until it converges to a specified criterion. The 

Newton-Raphson iteration is frequently used in two-phase, steam-water models 

to handle nonlinear thermodynamic variables near the saturation line. In the 

structure analysis of nonlinearly deformable fractures, the variable stiffness 

method and the load transfer method are modifications of the Newton-Raphson 

scheme {Goodman 1976). 

(c) Coupling Solution Schemes 

The coupled equations of pressure and temperature can be solved either 

sequentially or simultaneously. The sequential method solves the equations 

separately and treats the variables as unknowns only when their respective 

equations are being solved. The fluid flow equation for pressure is solved 
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first using the most current estimate of the temperature field in the evalua­

tion of the density and viscosity of fluid. Then the heat transfer equation 

for temperature is solved using the new pressure gradients in the evaluation 

of the Darcy flux. The steps are repeated until successive iterations yield 

compatible results. A model using this sequential approach is usually more 

easily constructed from simpler models solving uncoupled equations. On the 

other hand, many cycles may be required if the couplings are strong. The 

coupled variables can also be solved simultaneously, which involves larger 

matrices. 

(d) Temporal Approximations in Models 

Table 6 summarizes the implicit interpolation factor, the treatment of 

nonlinear coefficients, and the solution scheme for coupled equations used in 

the different models. 



Table 6. Time Difference 

Model 

ROCMAS 

TERZAGI 

CCC 

Duguid 

O'Neill 

GWTHEID/1 

FINI 

CFES'I' 

SWIFT 

Interpolation 
factor 

predictor­
corrector scheme 

A = 0, 0.5, 
(0.57- 1) 

A. = 0, 0.5, 
(0.57 - 1) 

0.5, 

A = 0.5, 

1 • 

A = 2/3 
' (diffusion term) 

A= 1. 

A=0.5,1. 

Coats A 1 • 

Faust-J:.olercer A 1 • 

MUSHRM 

SHAFT7 
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Nonlinear 
coefficients 

a, u stiffness 
perturbation 

Me, k from 
projection 

Iteration 

Iteration 

Iteration 

H, J.l iteration 

Newton-Raphson 

Newton-Raphson 

1 Newton-Raphson 

Newton-Raphson 

Solution Scheme 

P, u simultaneously 

P, T simultaneously 

i -i 
P , q simultaneously 

T
i . 

P, sequence & 1teration 

P, T sequence 

Iteration 

P, T, C sequence & iteration 

P, T, C sequence & iteration 

P, S or P, T simultaneously 

P, H simultaneously 

p, U simultaneously 

p, U simultaneously 
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Matrix Solvers 

After temporal finite difference, spatial discretization, and lineariza­

tion of the coefficients in the governing equations, the partial differential 

equations are transformed into a system of simultaneous linear algebraic equa­

tions or a matrix equation of the form 

The size of the matrix depends on the number of nodes, the number of variables 

and the solution schemes. For example, in a region with m nodes for solving 

simultaneously the two thermodynamic variables P and T, the matrix is 2m x 2m 

in size. The solution for the 2m unknown nodal values at time t+At in {f} can 

be obtained through the use of direct elimination methods or the use of itera­

tive methods. 

(a) Direct Elimination Methods 

Many of the direct methods are variations of the Gaussian elimination 

procedure. In this procedure, one unknown is eliminated from one equation at 

a time. The procedure works in a systematic way so that a general matrix 

equation is reduced to a triangular system. In the lower-triangular system, 

the first equation has one unknown, the second equation has two unknowns, etc. 

The tri~ngular system can be solved step by step, the first unknown being 

determined by the first equation and then the second unknown being determined 

by the second equation upon substitution of the first solution. This forward 

substitution proceeds until all the unknowns are determined. Similarly, the 

upper-triangular system can be solved by backward substitution. 
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The L~U decomposition is one method of Gaussian elimination. With the ma­

trix [M] decomposed into a lower- and an upper-triangular matrix, [M] = [L] [U], 

the matrix equation [M){f} = {F} is equivalent to two triangular systems: 

[L){g} = {F} and [U]{f} = {g}. 

If [L] and [U) are known, the matrix equation can be solved by forward and 

backward substitution. With a given n x n matrix [M], the matrices [L] and [U] 

are not unique. There are n2 elements in [M] and 0.5n(n+1) unknown elements 

in [L] and the same number in [U]. Therefore, there are n(n + 1) 

elements which can be set to any value. In the Doolittle methodu the diagonal 

elements of [L] are set to unity. With the n diagonal elements fixed, other 

elements in [L] and [U] can be determined algebraically. Alternatively in the 

Crout method, the diagonal elements of [U] are set to unity instead. The Crout 

and the Doolittle method are two popular direct-elimination solution schemes. 

The efficiency of a direct matrix solver depends strongly on the struc­

ture of a matrix. For the tridiagonal banded matrix frequently encountered 

in the application of numerical methods, the number of algebraic operations 

is approximately 5n, which is much smaller than the n3/3 required for 

Gaussian elimination of a general n x n matrix (Dahlquist and Bjorck 1974). 

In the alternating=direction~implicit (ADI) finite-difference method for a 

regular grid in two- or three-dimensional space, the partial differentials 

along different directions are solved and updated sequentially for fractional 

(1/2 or 1/3) time steps. Each nodal unknown for a quasi~one-dimensional frac­

tional step is connected to only two neighboring unknowns, so that the matrix 

has nonzero elements only on the diagonal and two nearest off-diagonals. 
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The matrix equation can then be easily solved by the tridiagonal or Thomas' 

algorithm. 

In most two- or three-dimensional methods, the matrix is sparse, with the 

number of nonzero off-diagonal matrix elements in each row or column depending 

on the number of neighbors of the corresponding node. The positions of the 

off-diagonal matrix elements relative to the diagonal element depend on the 

ordering of the nodes. Different ordering or numbering schemes can be made 

either to optimize the banding of matrix elements or to express parts of the 

matrix in diagonal or triangular form and minimize the computational effort. 

Another procedure required to ensure numerical stability and to minimize round­

off errors is the pivoting operation, which interchanges one row with another 

row or one column with another column in the matrix. It is necessary to per­

form the pivoting operation if zero or nearly zero elements are used during 

the Gaussian elimination procedure. 

(b) Iterative Methods 

If the matrix is sparse and large, iterative methods may offer certain 

advantages over direc·t methods. An iterative method starts from a first 

approximation, which is successively improved until a sufficiently accurate 

solution is obtained. Some examples of iterative methods are briefly des­

cribed here to demonstrate the procedure involved (Dahlquist and Bjorck 1974). 

If one diagonally splits a matrix [M] into lower~ and upper-triangular 

systems, [M] "' (D] + [L] + [U]. The matrix equation [M] {f) = {F} can be 

rewritten as: 
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( [D] + [L] }{f} "" -[U] {f} + {F}e 

An approximate solution from the k-th iteration step to the (k+1)-th step is 

This is the matrix form of Gauss-Seidel 1 s method. The inverse of the lower 

triangular ([D] + [L]) can be handled by forward substitution. 

If the residual from k-th to (k+1)-th iteration is denoted by 

is the successive overrelaxation (SOR) methode In matrix form, the new solu-

tion is: 

{ 'k+1 -1( J lk { l) fJ = ( [D] + w[L]) ( ( 1 - w) [D] - w[U] )tf J + w F J • 

The relaxation factor w should be chosen so that the rate of convergence is 

optimized. Eigenvalue analyses are frequently used for determining the best 

relaxation factor. For real, symmetric, and positive-definite matrices, 

0 < w < 2. Other relaxation or acceleration schemes can be constructed in a 

manner similar to that used for the successive overrelaxation method. 

The advantages of direct methods and iterative methods can be combined in 

the block iterative methods. In the block iterative methods, the coefficient 

matrix is partitioned into blocks and all elements of a block are operated on 

during one iterative step. Within each block, a direct solution scheme is 

used. The alternating-direction-implicit procedure is an example of the block 

iterative method. Each block is tridiagonal and can be easily solved. In 

general, the block iterative method is superior to the corresponding point 

iterative method. 
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(c) Matrix Solvers in Models 

Table 7 summarizes the main characteristics of the matrix solver for each 

model. In many cases, the major portion of the computational effort is on the 

solution of tile matrix equation. The nature of the problem, the size of the 

grid system, and the limitation of the computer storage determine the choice 

of the matrix solver and the efficiency of a model. With the rapid develop­

ment of general-purpose matrix solving packages and the improvement of comput­

ing and storage capacity, more models are switching from iterative methods to 

direct-solution methods. Direct solvers usually require larger core storage 

but minimize convergent tests. 
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Table 7. Matrix Solvers 

Model Matrix Solution Characteristics 

ROCMAS Crout L-U decomposition 

TERZAGI Evans 1 accelerated iterative scheme 

CCC Block ordering with permutation matrices and L~U decomposition 

Duguid Crout or Doolittle L-U decomposition 

0 1 l.\!eill Envelope storage and sparse matrix decomposition 

GWTHERM Tridiagonal algorithm 

FINI Symmetric decomposition 

CFES'I' Nonzero element compressed matrix storage and elimination 

SWIFT Two-line SOR or alternating diagonal ordering and elimination 

Coats Alternating diagonal ordering and elimination 

Faust-Mercer 3-D: slice SOR; 2-D: alternating diagonal ordering 

MUSHRM Tridiagonal algorithm 
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III. COMPUTER CODES 

After formulation of the governing equations and the selection of the 

numerical methods, the implementation of the computer code is a major effort 

in the development of a model. A general purpose code should be easy to use 

by both the developers and other users. This section discusses some of the 

practical aspects of using a code. Although detailed knowledge of the govern­

ing equations and the numerical methods are helpful in using a code, a user 

may be more interested in its capabilities and the input-output of the code. 

The following nine subjects characterize a code from a user's viewpoint. 

Documentation 

The user's manual, the code listing, the computer systems used, and the 

background of code development are of general interest. Table 8 summarizes 

the source information of the codes. 

Spatial Grid 

The basic shape of blocks or elements were discussed in the previous 

section (Table 5). Versatility in grid mesh design for modeling is especially 

important for fracture simulations which require complex discretization of the 

spatial domain. 

Material 

In preparing to use a code, it is 'essential to know the required input 

of material properties and the modeling capabilities to treat heterogeneity, 

anisotropy, pressure-, temperature-, and stress-dependence. The capabilities 

of different models were summarized earlier; see Table 2 for permeability; 



Table 8. 

Model 

ROC MAS 

TERZAGI 

CCC 

Duguid 

O'Neill 

GWTHERM 

FINI 

CFEST 
FE3DGW 

SWIFT 

Coats 

Faust-
Mercer 

MUSHRM 

~~-

SHAFT79 

; 

Computer Codes 

; 

,Code Listing 

i yes 

i yes 

i 
! 

yes i 

yes 

yes 

Dames 
and Moore 

Acres 

yes (FE3DGW) 

yes 

Intercomp 

yes (2D) 

s3 

yes 
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I 

User's M 1 :computer anua , 
i Systems 

References 

yes CDC Noorishad and Ayatollahi 
( 1980) 

yes ! CDC 
' ' IBM Narasimhan and Witherspoon 

(1977, 1978), Narasimhan 
(1980a,b) 

' ' yes i CDC, IBM Lippmann and others ( 1977b) 
Mangold and others ( 1979) 
Bodvarsson and others ( 1979) 

'cDC, IBM Duguid ( 1973) 
Duguid and Abel ( 1974) 
Duguid and Lee ( 1977) 

yes IBM O'Neill (1977, 1978) 

yes CDC Dames and Moore (1978) 
Runchal and others ( 1979) 

yes GE 

yes (FE3DGW) CDC, PDP, and Tanji (1976, 1977) 
Burroughs : and others ( 1975, 1980) 

yes CDC, IBM Dillon and others (1978) 
U.S.Geological Survey (1976) 

Coats ( 1977) 
Coats and others (1974, 1977) 

yes (2D) Faust and Mercer (1979a,b, 
1977a,b) 

Pritchett (1975, 1978) 
Garg and Pritchett (1977) 

yes CDC Pruess and others (1979a 6 b,c) 
Schroeder (1979, 
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Table 3 for porosity and rock medium compressibility; and Table 4 for heat 

capacity, thermal conductivity, and dispersivity. 

Fluid Properties 

The evaluations of the fluid properties determine the thermodynamic range 

of applicability of a nonisothermal model. The dependence of density and 

viscosity on temperature and pressure can be calculated either from a given 

formula or interpolated from tabulated values, as shown in Tables 2 and 3. 

Sources and Sinks 

The fluid source and sink terms simulate the injection and production 

at wells which are used to measure the in-situ material properties of the 

fractured rock formation. The localized, time-dependent heat sources from 

the radioactive decay of the waste in a repository will induce temperature 

increases, stress changes, and buoyancy flows which are important for the 

repository evaluations. 

Initial Conditions 

The initial conditions determine the solutions at later times. In 

simulations over long time spans, it is frequently necessary to stop at 

intermediate times to check the solutions and then continue the calulations. 

A convenient restart procedure is desirable. 

Boundary Conditions 

The flexibility of treating various boundary conditions by the program 

is important for complex problems. 
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Time Stepping and Solution Control 

The time steps can be specified by the user or controlled by the program 

according to specified criteria. It is important in the use of a code to know 

the procedures used in the program for checking the convergence of solutions. 

Convergence tests and error estimations should be included in the program. 

For the simulation of fluid flow around a repository, high accuracy in the 

pressure solutions is required to calculate the pressure gradients and the 

fluid velocities to be used in radionuclide transport calculations. 

Output 

The printer and graphic output are important for the analysis and presen­

tation of the results of modeling. 
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IV. VALIDATIONS 

'I'esting of a code is important in checking the mathematical validity, the 

numerical stability, and the versatility of the model. The numerical results 

can be validated either against analytic solutions and other known numerical 

results to test the accuracy of the code or against laboratory data and field 

experiments to determine the applicability of the model. This section briefly 

describes some frequently used analytic solutions and discusses certain other 

validation procedures. 

Analytic Solutions 

For simple one- and two-dimensional equations with constant coefficients 

and well-defined initial and boundary conditions, either the pressure equation 

or the temperature equation may be solved in terms of elementary analytic 

functions or special functions. In some cases, the solution exists in the 

form of a simple integral which can be easily evaluated numerically. Some 

examples of transient analytic or semianalytic solutions are listed below. 

1. Theis Solution 

For radial systems, the simplest pressure transient solution is the well­

known Theis solution or exponential integral solution, with the long-term 

pressure drop approximately proportional to the logarithm of time ('I'heis, 1935). 

The Theis solution applies to a fully penetrating line source well in a later­

ally unbounded homogeneous aquifer, or equivalently a horizontal fracture. 

The Theis solution has been generalized to cases with variable flow rates, 

finite wellbore with storage and skin effects, finite aquifers, leaky aquifers, 

partial penetration, multi-layer systems, etc (see review by Weeks 1977). 
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2. Double-porosity solutions 

For a double-porosity system, the formation fluid from the blocks 

supplies the flow in the fractures. The transient pressure drop has two loga­

rithmic portions, showing the delayed pressure responses due to the porous­

medium after the early response due to fracture flow (Barenblatt and others 

1961, warren and Root 1963, Streltsova-Adams 1978a,b). 

3. Two-phase Radial Flow 

For two-phase flow, the radial propagation of a flashing front due to 

mass production can be described by modified exponential integral solutions 

(Garg 1978). 

4. Instantaneous and Continuous Sources 

In addition to the Theis solution for a line source, the solutions for 

other source shapes can be easily derived using the Green 1 s function technique. 

Other examples of are the point source, the planar source, the disk source, 

the finite line source, the finite cylindrical source, etc. (Carslaw and 

Jaeger 1959). 

5. Single Fracture Solutions 

For a single horizontal or vertical fracture imbedded in a porous medium 

formation, solutions using superposition of point sources or Green 1 s function 

technique have been developed in the petroleum literature (Cinco-Ley and 

Samaniego 1978; Gringarten and Ramey 1974; Raghavan 1977). 
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6. Linear Convective-dispersive Solutions 

A popular solution for testing the temperature (or concentration) equa­

tion with a convective term is the horizontal linear injection solution (Ogata 

and Banks 1961). A generalized solution with heat loss due to vertical conduc~ 

tion to overburden and underburden (Avdonin 1964) has also been used for vali­

dation. The propagation and spreading of the temperature front is regarded as 

a standard test for problems of numerical oscillation and numerical diffusion 

for various upstream weighting schemes. 

Numerical Solutions and Laboratory Experiments 

Self-consistency and accuracy of a model can be checked numerically. For 

a given problem, the dependence of the numerical results on different grid 

spacings and time steps is one approach used to check the convergence and con­

sistency of a numerical code. The comparison of a new code with another code 

for the same problem with the same grid and time steps is also a frequently 

used procedure. This is especially the case when the earlier modeling results 

agree with an experiment. Laboratory experiments with well-defined initial 

and boundary conditions are very valuable for model validations. 

History Matching 

Besides being verified against analytic solutions, numerical solutions, 

and laboratory experiments, a model should attempt to match the history of 

field data over a long period of time. Even in a field with many wells, the 

subsurface conditions are so complicated that the input parameters character~ 

izing the reservoir are usually very difficult to estimate. Nevertheless, 
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reasonable success in matching long-term data and in predicting the future 

are important factors to be considered in reviewing a model. The success of 

history matching and prediction depends not only on the soundness of the code 

but also on the knowledge and experience of the modelers on the geological and 

physical processes to be modeled. 

Table 9 summarizes the field validations or history-matching studies per­

formed by the different models. 
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Table 9. Field Validations and Model Applications 

Models Field Validations 

ROC MAS 

TERZAGI Pixley, consolidation 

CCC Auburn, aquifer storage 

Duguid 

0 9 1\leill 

GWTHERM 

FINI 

CFEST 

SHAFT79 Serrazzano, geothermal 

Applications 

Dam foundations; 
Well testing, deformable fractures 

East Mesa, resource estimation; 
Well testing, pulse packer; 
Subsidence 

Cerro Prieto, reinjection; 
Generic studies: aquifer storage, 
geothermal, repository; 
Well testing 

Leaky aquifers 

Hot water injection 

Generic study: repository; 
Hanford repository 

KBS, repository; 
AECL, repository 

Sutter Basin, groundwater; 
Long Island, groundwater; 

Krafla, geothermal; 
Reservoir depletion; 
Sandia, repository. 
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V. APPLICATIONS 

Numerical simulations are useful not only for the better understanding of 

physical processes and for sensitivity studies, but also for the design of 

experiments and for the development of testing procedures to determine neces~ 

sary model input parameters. As more test results are obtained to improve the 

knowledge of a system1 more realistic models can be developed. For waste 

isolation in hard rock formations, model applications of interest include well 

testing analysis, mined cavern design, in~situ testing design and interpreta­

tions, regional rock formation responses to perturbation and long-term simu­

lations over geological time scales. Specific applications of the models are 

indicated in Table 9. In the following, general areas of application of the 

models are discussed. The focus will be mainly on fracture-related problems 

and thermally-induced phenomena. 

Well Testing Analysis 

In geological exploration and site evaluation, well tests are very 

important for the study of hydrologic properties of the formation. Well tests 

can be steady or transient, use a single well or multiple wells, use a packed 

interval for detailed studies or a well left open for integrated studies, and 

use production, injection, or pressure pulses to induce the pressure changes. 

F'or a shallow well intercepting a horizontal fracture in a hard-rock for­

mation, the simplest analysis to determine the fracture permeability from the 

flow rate and pressure drop is to use the steady-radial pressure solution. 

Although the assumption of steady flow and the requirement of a constant flow 
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rate are difficult to maintain for low-permeability fractures at greater 

depths, many field test data are first analyzed with this procedure. This 

analysis is applicable for either production or injection tests. One of the 

interesting anomalies observed in shallow-fracture systems is that fluid can 

be injected more easily than it is produced. This suggests the possibility 

that high fluid pressure opens the fracture and increases the permeability 

(Gale 1977). 

Pressure transient tests can be used to determine both the permeability 

and the storage capacity of the formation. Most of the pressure transient 

solutions for porous media and simple-fracture systems are based on extensions 

of the Theis solution. In well testing analysis, the measured pressure-time 

curves are compared to calculated solutions of different parameters, initial 

and boundary conditions, and geometries. One of the difficulties in well test 

analysis is that pressure-time curves in different cases are very similar in 

shape; and the inverse problem, determining the parameters, has no unique 

solution (Earlougher 1977). For multiple-fracture systems 8 the same diffi= 

culty is expected to occur in the determination of fracture parameters. 

In petroleum engineering where interest lies in improving production by 

hydraulic fracturing 8 the focus ot fracture well testing is to determine the 

extent and orientation of single, large fractures induced in fluid-producing 

formations and to estimate enhanced productivity due to flow through the frac­

tures. In geothermal engineering, many reservoirs are known to be naturally 

fractured. Man-made fractures are also of interest for hot-dry-rock geother­

mal studies. However, in waste isolation studies, it may be more difficult to 
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perform and analyze conventional well tests. For example, the formation may 

be too tight to conduct a constant-flow rate test within a reasonable period 

of time. The propagation of pressure perturbations through the complicated 

fracture network may be highly anisotropic and difficult to detect. The anom­

alies in the well testing data will stimulate additional numerical modeling 

efforts to understand the in-situ multiple-fracture systems. 

Mined Cavern Tests 

·Nuclear waste repositories are likely to be mined tunnels separated by 

wide pillars in a suitable rock formation. Prior to the construction of a 

repository, field experiments in underground mined caverns either newly exca­

vated or extended from an old mine can provide valuable data for the character­

ization of the rock formation. Currently, in the United States, the granite 

and tuff formations in Nevada Test Site and the basalt formation in Hanford 

Reservation are being tested. Belgium, Canada, France, Sweden, United Kingdom, 

and west Germany are also studying various rock formations for waste isolation. 

The influences of fractures on the heat transfer and fluid flow in underground 

field experiments are illustrated by the granite experiment in Stripa, Sweden. 

The test drifts in Stripa, Sweden, are approximately 340 m below the 

surface in granite adjacent to an abandoned iron mine. Three heater experi­

ments were carried out. Two "full-scale" experiments simulated the short-term 

near-field heating effects of an individual nuclear waste canister at two 

different thermal power levels, 5 kW and 3.6 kW. The third experiment used an 

array of eight scaled-down heaters with decaying power to study the thermal 

interaction between adjacent canisters. The rock mass adjacent to the heaters 
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was monitored extensively by using thermocouples to measure temperature rises, 

extensometers, and deformation gauges to measure rock displacements (Wither­

spoon and others 1979a). Analysis of the temperature data indicates that the 

temperature field data agree with the theoretical prediction, assuming heat 

conduction is the only mode of heat transfer (Chan and others 1978). However 

the thermally induced displacements are substantially smaller than the predic­

tion based on elastic responses of rock mass. One possible explanation of 

this discrepancy is the presence of fractures which deform differently than 

the intact rock. 

Although groundwater convection may not be important for heat transfer, 

the presence of water was noted in some of the heater holes. The test site 

is believed to be below the groundwater table and seepage into the drift was 

noted. The seepage of groundwater has been used in a macropermeability 

experiment (Witherspoon and others 1979b). The inflow to a 33m-long x 5 m­

diameter drift was measured by evaporating the seepage into the ventilation 

air while measuring the change in water vapor content. In order to measure 

this change in water vapor content, the drift was sealed off and the wet and 

dry temperatures of the inlet and exhaust were taken. During the experiment, 

air in the drift was kept at a constant temperature. The pressure distribu­

tion within the rock formation was measured in 15 boreholes, 30 to 40 m long, 

drilled into the surrounding rock in different directions. For each borehole, 

six packers were installed at approximately 5 m intervals. There were a total 

of 90 packed zones sampling approximately 106m3 of rock mass in three­

dimensional space. The pressure distribution and the flow rate can be used 
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to determine the hydrologic properties of the rock mass around the drift. 

Preliminary quasi~steady analyses indicate that the existence of a low permea­

bility zone surrounding the drift may be due to the closure of fractures under 

the tangential compressive stress component. Beyond the low permeability zone, 

the average hydraulic conductivity is estimated to be about 1o-12 mjsec. The 

details of the pressure distributions are being analyzed. This macropermea­

bility experiment is one approach to determining how a fractured-rock mass can 

be modeled as a continuum. Numerical modeling of these experiments should be 

useful for repository studies. 

Simulations 

Generic models and conceptual designs are being made for various reposi­

tory configurations in different rock formations. Numerical simulations will 

be the primary method of assessing the repository impact over spatial dimen­

sions of thousands of meters and over time spans of thousands of years. Sev­

eral models considered in this study have used stratified porous media or 

simple discrete fracture systems to represent the fractured rock formations 

(Dames and Moore 1978; Burgess and others 1979; Gupta and others 1980; Wang 

and Tsang 1980). 

The velocity of groundwater flow is the quantity of interest for thermo­

hydrologic repository simulations. Typically, calculations start with the 

determination of the temperature rise surrounding the repository and follow 

with an evaluation of the buoyancy pressure gradient resulting from the den­

sity change of hot fluid. Permeability and porosity, together with the total 

pressure gradient from the superposition of tl1e buoyancy component and the 
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ambient component, determine the flow velocity. Additional calculations can 

be made for the movement or track of water particles from the repository to 

the ground surface. 

As more data on rock formations are available, more detailed models will 

be constructed to simulate the flow field and radionuclide transport. There 

is also a need for numerical models that take into account the stochastic dis~ 

tributions of the rock parameters. We expect that the repository studies will 

lead to a better understanding of the behavior of fractured rock masses. 

Geothermal Studies 

Recent interest in the use of geothermal energy has contributed to the 

rapid advancement in numerical modeling of nonisothermal flows, especially the 

changes from liquid to two-phase, steam-water mixture. Although two-phase 

phenomena are likely to be limited in a repository environment, the simula­

tions of geothermal reservoirs for pressure and temperature changes are of 

interest to repository studies of comparable formation sizes. We will briefly 

discuss one example--the geothermal field at Wairakei, New Zealand--to illus~ 

<trate the use of a porous-media model for the simulation of the production of 

steam from an initially liquid-dominated, fractured reservoir over a twenty­

year period. 

Although the fluid is believed to be produced from a highly fractured 

zone in the vicinity of the interface between the reservoir and the bed rock, 

the reservoir as a whole (over 300 m thick) was modeled as a porous medium 

layer. The pressure decline over the whole field since the start of fluid 
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production has been successively modeled by the history-matching procedure 

(Pritchett and others 1980; Mercer and Faust 1979). However, the "best" 

parameters used in the match do not agree with the values determined from core 

samples in the laboratory. The core sample porosity is higher and the permea­

bility is much lower than those inferred by the model. The discrepancy can be 

attributed to the presence of fracture systems which control the fluid flow 

field. 

The fractures may also control the subsidence observed in this geothermal 

field. The maximum subsidence has been observed outside the main production 

area. The rate of subsidence is not proportional to the pressure decline. 

These observations cannot be explained by a simple pore-collapse model. The 

subsidence is believed to be induced by a seismic slippage of a fault which 

acts as a hydrologic boundary. 

Similar success in modeling the pressure distribution in porous-media has 

been achieved for the fractured two-phase reservoir in Serrazzano, Italy 

(Pruess and others 1980). Currently the Cerro Prieto field in Mexico is being 

studied (Lippmann and Goyal 1979). These geothermal field studies should be 

useful for a better understanding of the thermohydrologic flow in fractured 

rock masses. 



61 

SUMMARIES OF INDIVIDUAL MODELS 

This section summarizes details of the individual models under the same 

five headings used in the previous section, Comparative Review: 

I0 Governing equations 

II. Numerical solutions 

III. Computer codes 

IV. Validations, and 

V0 Applications@ 

We have attempted to make the notation consistent for all models. These 

summaries will be useful for a more detailed comparison among models and for 

identifying the strengths of each model. They will also be helpful in provid­

ing a concise introduction to potential users. 
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ROC MAS 

ROCMAS (ROCk MASs) is a finite-element program for coupled flow and 

stress in deformable, saturated, fractured rock media. The two~dimensional 

code combines the capability of isothermal transient pressure analysis and 

stress-strain analysis in formations with discrete fractures and porous blocks. 

The option of thermally induced stress analysis has been implemented. Coupl­

ing of the pressure field and the mechanical deformation is founded on the 

extension of Biot's consolidation theory for porous elastic medium to nonlin­

ear fracture behavior. The current version of the model is described in 

Noorishad and others (1980). Summaries of early developments and related 

information are found in Ayatollahi (1978) and Ayatollahi and others (1980). 

The early version of this code is known as PORFRC. 

I. GOVERNING EQUA'l'IONS 

In this model, the fluid movement and the solid deformation are coupled. 

Each point in space, either inside a discrete fracture or within a rock block, 

has a pressure variable P and a solid displacement vector u. The coupling 

between P and u can be described in the following loop. As the pressure 

changes, the effective stress acting on the rock solid changes accordingly and 

affects the displacement or strain of the solid. The displacement of solid 

changes the permeability of the flow path and results in changes in the 

pressure field. The mathematical form of the coupling between the fluid flow 

and rock displacement can be written down as a set of three equations for the 

pressure-strain, strain-stress, and stress-load balance relations. 
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Pressure-Strain Equation 

The pressure-strain equation describing the fluid flow is: 

i:lP i aE 
i at - a at 
M 

where Mi and crL (i= d for discrete fractures and i = m for porous-medium 

blocks) are material properties (Biot constants) representing the responses of 

fluid mass content to changes in pressure and changes in volumetric strain E• 

The coupling between tl1e pressure and the displacement is mainly through the 

sensitive dependence of tl1e permeability on the fracture aperture b 1 and 

through the transient derivative oE/ot. The discrete fracture permeability 

d 2 c 

k = b /12 for parallel-plate laminar flow is used in this model. In general, 

the volumetric strain E is determined by the pressure and the stress field. 

In most uncoupled models, the derivative ae:;at is approximated in terms of the 

pressure derivative ClP/ot, and the fluid flow equation is reduced to a simple 

transient pressure equation with the storage coefficient in front of (lP/(lt 

determined by the porosity of the formation and the compressibilities of the 

fluid and void structures. 

Stress-Strain Relation 

In more general cases with coupling 1 the volumetric strain E = E + E 
XX ZZ 

depends on the effective stress field. The fluid pressure counteracts the 

rock stress normal to the fluid-solid interfaces. The effective stress-strain 

relation can be formally written in the form of Hook's law (Biot 1941 1 1955, 

1956, 1961): 

-
E. 
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=m For isotropic elastic porous rock media, the components of the tensor C can 

be expressed in terms of two elastic constants--for example, Young 1 s modulus 

and Poisson 1 s ratio. For anisotropic, inelastic deformable fractures, the 

stress-strain relation is very nonlinear. In this model, a nonlinear normal 

s·tress-normal displacement relation and a nonlinear shear stress-shear dis-

placement relation are used (Goodman and others 1968). The normal and shear 

stiffness (change of stress per unit change of displacement) as functions of 

stresses characterize the fracture behavior. The displacement u is 

simply related to the strain E by the component definition 

(
au. au.) - ~ J 

E .. - 0 • 5 -,- + -,- • 
~J ·ax. ax. 

J ~ 

Load Balance 

The third equation for the unknowns P, a and c: is Newton 1 s first law of 

static equilibrium applied to an infinitesimal volume element of the fluid-

filled medium 

i-
'V· 0 + p f = 0, 

i 
where p is the bulk mass density and f is the body force. One body force 

or volumetric force is the gravity g. Both the gravity effects on the fluid 

and rock can be taken into account. Gravitational drainage of fluid can be 

modeled. 

Thermal Stress 

'!'he thermally induced stress, as well as the static stress can be includ-

ed as part of the total applied stress o. The temperature field used in the 
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thermal stress analysis is calculated by a heat conduction subroutine in the 

program. With this option, partial thermal-mechanical~hydrologic coupling is 

included in this code. 

II. NUMERICAL SOLUTIONS 

Variational Finite-Element Method 

The finite~element method is used to discretize the space domain. The 

two-dimensional space is decomposed into finite~element quadrilateral domains 

with four=corner nodes. Each node has the values of three variables: the 

pressure P and the two components of solid displacement u. Isoparametric 

bilinear polynomial basis functions are used to interpolate from the nodal 

values to the space within an element representing the porous rock medium. 

For a fracture, it is assumed that the aperture is small and fluid flow is 

along the fracture surfaces. The pressure difference between adjacent nodes 

across the aperture is negligible, and a one-dimensional element can be used 

for interpolating between two end point pressures (Wilson and Witherspoon 

1974). For the fracture displacements, it is convenient to take the same spa­

tial (global) coordinates for each pair of points across the small aperture 

for the four-corner element. However, the relative movements of the surfaces 

in the direction vertical to the fracture plane and along the fracture are 

important for the structure analysis. The fracture element in terms of these 

relative displacements is used (Goodman and others 1968). 

For N nodes in a modeled domain, the matrix equations relating the 3N 

nodal variables are obtained by a variational formulation. The method starts 
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with the adaptation of a variational principle. The variational functional, 

written for general initial and boundary conditions, includes all the 

terms of the static structural-analysis variational, the terms of the tran-

sient fluid flow analysis, and a coupling term for the two functionals. 

Taking variation of the discretized functional with respect to field 

u and P results in the following pair of matrix equations 

[C]T{u} + ([E] + 1 * [H]) tP) = 1 * [Q] 

·where the matrix [K] contains the coefficients of the stiffness of stress-

displacement of both inelastic fractures and elastic medium, [C] the Biot 

coupling coefficients, [E] the fluid storage coefficients, [H] the fluid 

hydraulic conductivites, and [Q] the fluid boundary fluxes. 'l'he column vector 

{u} contains the 2N nodal values of u for the m porous nodes and N-m fracture 

nodes, tP! the N values of P, and {F} the body force and boundary loads. 

Predictor-Corrector Time 

The notation 1* in the matrix equation represents the time integration 

from 0 to t. To step from t to t+~t, this model uses a predictor-corrector 

scheme. The solution is first predicted at t+ti~t with 2 ~ e ~ 1. 

and then it is corrected by linear interpolation: 

A( t+~ t) A(t) + ~2
1 

t(Pt + P . ) • 
t+ti.!> t 
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The unknown at t+~t is given by 

It is noted that 6 ~ 1 is the central differencing Crank-Nicholson scheme. 

The coefficient e > 1 is used to damp out the numerical oscillation while 

slightly slowing down the convergent rate (Taylor 1974). 

Stiffness Perturbation Scheme 

The nonlinear behavior of fracture stress-displacement is dealt with by 

the stiffness perturbation technique (Goodman and others 1968) during each time 

step. The stiffness matrix depends on the displacements when the displace-

ments are out of the linear range. Iterations proceed until the stiffness 

matrix stabilizes within convergent criteria. 

Matrix Solver 

Within one iteration the matrix equation of tu/ and {P} is solved by a 

direct procedure. The matrix is decomposed into lower- and upper-triangular 

matrices by the Crout method. This reduces the matrix equation to two 

triangular systems which can be solved by backward and forward substitution 

procedures. 
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III. COMPUTER CODES 

Documentation 

The code is written in FORTRAN IV and is currently being used on the CDC 

7600 at Lawrence Berkeley Laboratory. The user's manual with code listing are 

available for the stress-flow version (Noorishad and Ayatollahi 1980). Setup 

of the data follows the organization of other finite-element programs at the 

University of California, Berkeley. Familiar options of stress and strain 

analysis codes and fluid flow codes are included in this code. One version of 

the program is adopted for thermally induced stress calculations. 

Spatial Grid 

The two-dimensional grid consists of four-corner quadrilateral elements 

for the porous rock medium and two-node elements for the discrete fractures. 

The fractures may extend from one boundary to another, intersect each other, 

or be isolated in the porous rock medium. An axisymmetric grid is also used. 

Material 

The constant permeability of the porous-rock medium and the initial aper-

ture of the fracture are input parameters. For coupled calculations, the pres-

sure- and stress-induced changes in displacement will be used to update the 

aperture and the fracture permeability. 

The parameters Mi in the fluid flow equation for the porous-rock medium 

and fracture can be estimated in general from the porosity and the compressi-

i i 
bility of fluid as 1/ijil:lp• The coupling constants a are dimensionless. 
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ai = 0 decouples the pressure calculation from the stress-strain analysis. 

For material with highly incompressible solid grains, a= 1. 

The mechanical properties required are Young's modulus and Poisson's 

ratio for the elastic porous rock medium and the initial normal stiffness, 

tangential stiffness, cohesion, and angle of friction for the fracture. 

Fluid Properties 

The fluid density and viscosity are input parameters. 

sources and Sinks 

For thermally induced stress calculation, the heat source is handled in 

the separate heat conduction subroutine. 

tial Conditions 

Distribution of stresses, pressure, and displacement can be speci­

fied for the initial time or for the restarting time. 

Conditions 

Pressure and flux boundary conditions can be specified for the fluid flow. 

Static load, thermal load, and displacement boundary conditions can be speci­

fied for the stress-strain analysis. 

•rime s and Solution Control 

The time step can be increased logarithmically. A convergent criterion 

is specified on the stiffness difference in the iteration-perturbation proce­

dure to handle the nonlinear fracture behavior. 
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Output 

At the end of each time step, the pressure, displacement andjor tempera­

ture on the nodal points and the flow flux and the stress components on the 

element can be printed. Graphic output of the mesh with the plot of the prin­

cipal components of stress and displacement are generated in the program. 

IV VALIDATIONS 

The code has been developed from an early iterative finite-element 

program with steady-state flow and static force~displacement analysis in a 

jointed formation with impermeable rock (Noorishad 1971; Noorishad and others 

1971). Most of the recent efforts to validate this code are focused on the 

transient fluid flow behavior in fractures embedded in porous-rock media. 

The recently developed thermally induced stress option has also been tested by 

comparison with numerical solutions using SAP IV. Validation of the capabil­

ity to handle coupling between transient fluid flow and stress~strain analysis 

is limited because of the lack of analytic solutions and other numerical re­

sults. The documented tests (Ayatollahi 1978; Ayatollahi and others 1980) on 

the transient fluid flow in porous media and in fractures are listed below. 

(a) Continuous Finite~Radius Well Source: The early-time transient 

pressure responses of an axisymmetric flow to a producing well are compared 

with the analytic solution of Mueller and Witherspoon (1965). 

(b) Finite Axisymmetric Aquifer: The late-time pressure responses with 

no flow as well as constant outer boundaries are compared with the analytic 

solutions. 
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(c) Vertical Fractures: The pressure responses for a single vertical 

fracture and two perpendicular vertical fractures intersecting a well at the 

center of a rectangular porous medium are compared with the analytic solutions 

of Raghavan and others (1978). 

(d) Vertical Fracture Near a Well: The pressure responses for an obser~ 

vation well in a system with a fracture not intersecting, but aligned with a 

producing and an observation well, are compared with the analytic solution of 

Cinco-Ley and others (1978). 

(e) Horizontal Fracture: The pressure responses for a horizontal frac~ 

ture located at the center of an aquifer and intersecting a well in an axisym~ 

metric region are compared with the analytic solution of Gringarten and Ramey 

(1974). 
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V. APPLICATIONS 

The importance of the coupling between the fluid flow and the mechanical 

deformation in fractures has been analyzed by the iterative steady-state 

version of this code. The flow through a jointed darn foundation has been sim­

ulated (Noorishad and others 1971). It is noted that a deformable fracture 

system has lower flow through the foundation and higher uplift pressure than 

a rigid network of fractures. The code has also been used in the analyses of 

laboratory experiments of large rock samples with tension fractures and of 

field tests in shallow fractured formations (Gale 1975). It is well known 

that high pressure at a wellbore can open up the fractures and will result in 

a high injection rate, while low pressure at a wellbore during withdrawal can 

close the fracture and decrease the hydraulic conductivity of flow. 

The recently developed transient code has not yet been applied exten­

sively to field situations. The thermally induced option is developed for 

application in near-heater or canister field experiments in fractured rock 

formations, for example the granite experiments in Stripa, Sweden. 
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VI. SUMMARY 

This model is for the study of coupled fluid flow and stress in deform­

able fractured rock masses. The effective mass theory of Biot is used to 

relate the pressure changes with the displacements of the rock matrix. The 

deformation of the fracture surfaces in turn affects the fracture flow through 

the sensitive dependence of permeability on aperture. 

The code combines techniques of fluid flow modeling and stress-strain 

analysis. The two-dimensional finite element code incorporates the flow ele­

ment of Wilson and Witherspoon (1974) for the fracture flow, the joint element 

of Goodman and others (1968) for the representation of mechanical behavior of 

the fracture. A stiffness-perturbation scheme for handling nonlinear fracture 

behavior and a predictor-corrector scheme for damping out numerical oscilla­

tion are used in the program. 

The model is based on a general theory which is of fundamental interest 

and practical importance. The code has the capability of handling a range of 

complex problems in fluid flow, induced rock mass deformations, and soil con­

solidation. The inclusion of the thermal stress option is relevant for waste 

disposal problems. Further developments to couple the fluid flow with heat 

transfer or to incorporate dynamic stress analysis can increase the range of 

applicability. More extensive application of the code is called for. Docu­

mentation of validations on stress analysis will be of interest. 
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TRUST-TERZAGI 

TRUST (TRansient flow in ~nsaturated and STrained porous medium) is an 

integrated finite-difference program for saturated-unsaturated, three-dimen-

sional isothermal flow in deformable media. TERZAGI is the saturated flow 

version. The deformation of the medium is calculated using the one-dimensional 

consolidation theory of Terzaghi. Soil consolidation and fracture well test-

ing have been studied. TRUST-TERZAGI is described in Narasimhan (1975, 

1980a,b), Narasimhan and Witherspoon (1976, 1977, 1978), Narasimhan and others 

(1978), and Narasimhan and Palen (1979). 

I. GOVERNING EQUATIONS 

In this model, the governing equation for isothermal fluid flow in a 

deformable medium is described by an integral equation of the form 

The Darcy velocity is: 

w 
The quantity hp represents the average pressure head P/p

0
g over the volume 

element v bounded by the surface A, and D/Dt denotes a material derivative in 

the deforming medium. The volume V contains the constant rock solid volume Vr 

and the variable pore volume vP. The fluid flow equation is in general non-

linear, since the fluid mass capacity M , the fluid density pw, the permeabil­
c 

ity k, and the fluid mass source/sink QF can be dependent on hp or t. 
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Fluid Mass Capacity 

The fluid mass capacity, M , represents the change of fluid mass content 
c 

w 
s~~ V with unit change of pressure head. The fluid mass capacity is deter-

mined by the compressibility of the fluid p;, the deformability of the pores 

av, and the desaturation of the water in the pores dS/dhp: 

For saturated rocku S = 1 and X1 = 1, the fluid mass capacity M can be 
c 

expressed in terms of the more familiar coefficient of specific storage S 
s 

w . h as M = Vp S , W1t 
c s 

w [ . "w ( ,h ) ] • = P g ~~P + 1 - ~ av • S
8 

1s usually treated as a 

constant for each material. For unsaturated flow, the dependence of the satu-

ration S on the pressure head is a multivalued hysteresis relationship which 

can be handled by the model. 

Deformation 

The coefficient a in the fluid mass capacity M is determined by the 
v c 

dependence of the void ratio, e = vP;vr = $/(1 - ~), on the effective stress 

0 1
: a 

v 
de/d0 1

• In Terzaghi 1 s one-dimensional consolidation theory, the 

effective stress 0 1 is related to the normal stress oN by oN - P for the 

saturated region and oN- AP, 0 ~A~ 1, for the unsaturated region. In the 

calculation of vertical subsidence, the normal overburden stress aN is given, 

and the vertical displacement due to pore pressure change is evaluated by an 

e versus 0 1 relationship. 
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When the rock (soil) is loaded to levels never attained before, the void 

ratio decreases very nonlinearly as the effective stress increases for most 

material. The plot of e versus log o 1 is usually a reasonable straight line 

with slope C (compression index) for virgin loading and with slope C (swell~ 
c s 

ing index) for unloading or rebounding. In terms of C , the coefficient of 
c 

compressibility a ~~de/do' = C /2.303o'. In this model, the consolidation 
v c 

behavior can be modeled by specifying C (or C ). If one is not interested 
c s 

in modeling the inelastic consolidation, then a can be specified to be a 
v 

constant. 

Depending on the e versus o' relationship chosen, the model can account 

for the effects of either elastic or inelastic normal deformations of the 

fractures or pores for cases involving constant external loads and change of 

internal loads due to pore pressure change. 

The change of void ratio e may also affect the permeability k profoundly. 

In the numerical model, one could use convenient experimental relationships or 

simply tabulate k as a function of effective stress or void ratio. One rela~ 

tionship used in the model is: 

k k 
0 [

2.303(e 
exp c 

k 

- e ) 
0 

where k and e are arbitrary reference values of the permeability and void 
0 0 

void ratio, respectively, and Ck is the slope of the best~fitted straight 

line for the relationship of e versus log k. 
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II. NUMERICAL SOLUTIONS 

Spatial Gragients 

The model uses the integrated finite-difference method to discretize the 

flow regime and to handle the spatial gradients. In the integrated finite-

difference method, the volume elements can be arbitrarily shaped polyhedrons. 

The spatial gradient between nodes (centroids of V) m and n is approximated by 

(h - h )/(d + d ), where d is the normal distance from node n to 
P,m P,n n,m m,n n,m 

the interface between n and m. The quantities k and P on the interface be-

tween m and n are evaluated as harmonic means to preserve continuity of flux 

at the interface. Thus 

k m,n = k k m n 

d 
m,n 

k d m n,m 

+d 
n,m 

+ k d n m,n 

and nw is similarly calculated. The harmonic mean of k is correct when k "'m,n 

changes stepwise at the interface. 

Integrated Finite Difference Equation 

First-order finite difference in time is used. In terms of the interface 

conductance, 

u n,m 

k p g 
. n,m n,m 
tin, m ll 

A 
n,m 

(d + d ) 8 

n,m m,n 

the implicit finite-difference equation corresponding to the governing 

integral equation is:\ 

M 
Cun 

' U f( z + h t + Mh ) - ( z + h t + AL'Ih ) ] + ( QFV) • L n,m L m P,m P,m n P,n P,m n 
m 
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The difference equation relates the mass accumulation in element n with the 

mass fluxes across the interfaces from the neighboring elements m. This equa-

tion is valid for an arbitrary element n connected to an arbitrary number of 

elements m. 

Explicit-Implicit Scheme 

For explicit differencing procedures with the interpolation factor A = 0, 

the solution of the finite-difference equation is unstable if ~t exceeds the 

critical value 

M 

In the mixed explicit-implicit scheme, the node blocks will be reclassified as 

implicit nodes only when needed to assure stability. The implicit interpola-

tion factor is made to vary between 0.57 and 1.0. A solution in time may be 

obtained by this optimized mixed explicit-implicit procedure or by choosing a 

backward-differencing implicit scheme, a central-differencing Crank-Nicholson 

scheme, or a forward-differencing explicit scheme. 

The implicit difference equation is solved by an iterative scheme (Evans 

and others 19548 Edwards 1972). To proceed from the k-th step to the (k+1)-th 

step in the finite-difference equation, set 

~hp 1 left-hand side ,n 

~hp , right-hand side 
,n 

k+1 
= Ahp 

un 
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~hp , right-hand side = ~hk 
,m P,m 

until convergence criteria are satisfied. The acceleration factor s = 0.2 

is used. Recently a direct solver option has been incorporated into TERZAGI. 

The implicit equations can now be solved either iteratively or directly. 

For cases in which the fluid mass capacity and the permeability are func-

tions of hpu Me and k are evaluated at an estimated average value of hp,n be-

fore carrying out the calculations of ~hPen for that time step. The estimated 

~hPun is obtained from ~hP,n calculated for the last time step and the ratio 

of maximum rates of change during the proceeding two time steps. This estima-

tion and other safeguards against possible sources of instability are discussed 

in Edwards (1972). 

Integral Formulations 

The main advantage of the integrated finite-difference method is the 

straightforward formulation of the numerical equations from the integral form 

of the governing equation over arbitrarily shaped blocks. The chief limita-

tion of the method is that the finite-difference gradient approximation is 

inadequate in evaluating tangential gradients along the interfaces and in 

handling tensorial properties such as the stress fields which generally rotate 

with time. The model is currently being extended to handle three-dimensional 

deformation using integral formulation. Except for the procedure used in 

evaluating the gradients, the integrated finite-difference method and the 

modified Galerkin finite-element method (with diagonal capacity matrix) are 

conceptually very similar (Narasimhan and Witherspoon 1976). Both these 
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approaches derive their ability to handle complex geometries from the integral 

nature of the formulation. 

III. CO!~UTER CODES 

Documentation 

The codes are written in FORTRAN IV and have been adapted to a number of 

computer systems at Lawrence Berkeley Laboratory, Lawrence Livermore Labora­

tory, Battelle Pacific Northwest Laboratory, Atomic Energy of Canada Limited, 

Science Applications 8 Inc., University of Arizona, and the University of 

Waterloo. The user 1 s manual has been prepared (Narasimhan 1980a). The code 

listings of TERZAGI and TRUST are available from T. N. Narasimhan at Lawrence 

Berkeley Laboratory. The input is organized into data blocks. 

Spatial Grid 

In this model there is no restriction upon choice of basic block shape or 

nu1mering of nodes. The geometric configurations of the nodal elements can be 

arbitrary and may be one-, two-, or three-dimensional, with rectangular, cylin­

drical, axial, or spherical symmetry. The volumetric properties of the blocks 

and the geometric properties of connections between nodes are required input 

data. For complex problems, the design of a mesh will require the most effort 

when using this program. Auxiliary computer programs for mesh and input data 

generation are available for a number of grid systems, including the case with 

cylindrical or elliptical rings near a well, gradually changing to rectangular 

blocks in the far field. This mesh is relevant for the simulation of horizon­

tal or inclined fractures intersecting the well with cylindrical or elliptical 



81 

cross section and intersecting other planar fractures within the rock mass 

with linear intersections. 

Material 

Each grid block can be assigned a different material with a different 

permeability and a different fluid storage coefficient. For each material, 

the permeability k can be (i) a constant, (ii) a function of effective stress 

a' with tabulated values, or (iii) a function of void ratio by specifying the 

slope of the e versus log k curve. The model can handle anisotropic permea­

bility by orienting grid blocks parallel to the principal axes of anisotropy. 

The fluid storage capacity of each material can be (i) specified by a 

constant specific storage , (ii) determined by the coefficient of compressi-

bility av, or (iii) varied with effective stress by specifying the slope Cc 

and Cs of the e versus log a 1 loading and unloading curves. The initial void 

ratio e
0 

and initial stress a 1 are input parameters for (ii) and (iii). The 

specific weight and the depth of the grid block are used to calculate the over­

burden stress. 

Fluid 

The water density, viscosity, and compressibility are input parameters. 

The water compressibility and the formation compressibility are used to calcu­

late the fluid storage capacity. 

Sources and Sinks 

The volumetric fluid generation rate may vary with spatial position, time, 

or the pressure head. 
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Initial Conditions 

The pressure head, volumetric generation rate, preconsolidation stress, 

and boundary conductance may be specified for each grid block for the initial 

time or for the restarting timee 

Conditions 

Prescribed pressure head as well as prescribed flux boundaries can be 

simulatede The external source or sink, coupled to the system by means of 

boundary conductance, may vary with time. The model can handle finite 

diameter wells (wellbore storage effects) and fractures as part of the flow 

region. For saturated-unsaturated flow, it will handle a seepage boundary. 

Time S and Solution Control 

The mass balance is calculated by the program. The maximum or minimum 

allowed time step can be specified. The size of time step can also be 

controlled by specifying the desired maximum change in pressure head in each 

time step. The criteria that may be specified for ending a problem are: the 

attainment of steady state; upper limits on the problem time or the computer 

time; the number of time steps; and upper and lower limits on the value of 

pressure head. 

Output 
~~-~ 

The value of pressure head and its time derivative at a selected node and 

the pressure heads and fluxes of all the grid blocks can be output at regular 

time intervals or cycles. Separate graphic programs can be used to process 

the output data. 
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IV. VALIDATIONS 

The codes have been validated with analytic solutions, other numerical 

solutions, laboratory tests, and field data. The following is a list of 

solved problems. 

Analytic Solutions 

(a) Continuous Line Source: The Theis problem is solved with 9 nodes in 

radial coordinates. 

(b) Continuous Point Source: This problem is solved by using grid blocks 

which grade gradually from spherical near the point source to cubic­

shaped at the outer boundary. 

(c) Steady Radial Flow: The flow rate from an outer cylindrical radius to 

the wellbore is calculated. 

Fracture Flow 

(a) Vertical Fracture: The well testing type curves of finite-conductivity 

vertical fractures are compared with the semianalytic solutions of 

Cinco-Ley and others (1978) in Narasimhan and Palen (1979). 

(b) Horizontal Fracture: The pressure decay curves of pulse packer tests 

are calculated both numerically and semianalytically in wang and others 

(1977). 

Soil Consolidation 

(a) Compaction: A simulation of clay columns with depth-dependent permea­

bility is compared with the numerical result of Schiffman and Gibson 

(1964). 
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(b) Subsidence: The simulation of field data in a multilayer system is 

compared with the numerical result of Helm (1975). 

Unsaturated Flow 

(a) Moisture: A calculated moisture content profile is compared with the 

analytic solution of Philip (1969). 

(b) Infiltration: The simulation of rain infiltration into dry soil is com~ 

pared with the numerical solution of Rubin and Steinhardt (1963). 

V. APPLICATIONS 

This model has been applied to soil mechanics, hydrogeology, geothermal, 

and well testing. The following is a brief summary. 

Fracture Well Tes 

(a) Rough Fracture Flow: The laboratory testing of partially closed fracture 

flow has been analyzed by this model (Iwai 1976). The presence of contact 

area reduces the flow. 

(b) Finite Conductivity Vertical Fracture: The fluid flow from a surrounding 

reservoir to a well intercepting a single vertical fracture has been 

analyzed. The fracture deformability, finite fracture conductivity, 

fracture geometry, and wellbore storage and damage, all affect the tran­

sient pressure response to fluid production. 

(c) Pulse Packer Test: The model has been used in the development of pulse 

packer testing for fractures. 

(d) Hydraulic Fracturing: The model has been adapted to handle a propagating 

fracture (Narasimhan and Palen 1979). 
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Geothermal 

(a) Resource Evaluation: The capability of producing fluid from the East 

Mesa geothermal reservoir has been studied. 

(b) Subsidence: A simulation of the subsidence in Wairakei geothermal res­

ervoir is currently under way. 

(c) Injection: Several pressure calculations have been performed. 

Deformable Soil 

(a) Consolidation: Saturated flows have been studied in consolidation of a 

heterogeneous, doubly draining clay column, in simulation of field 

consolidation due to periodic water-level changes observed at Pixley, 

California and in consolidation of a column of clay slurry. 

(b) Infiltration: Unsaturated flows have been studied in infiltration into 

a moderately saturated soil, in infiltration into a column of extremely 

dry soil, and in axisymmetric flow into a soil-water sampler. 

(c) Drainage: Saturated-unsaturated flows have been studied in drainage from 

a one-dimensional soil column, in drainage from a sand box, and in con­

solidation around an excavation in soft clay. 

(d) Soil Liquification: Pore pressure generation and dissipation have been 

modeled in a three-dimensional system. 



86 

VI SUMMARY 

This model is for the study of fluid flow in deformable saturated and 

unsaturated formations. The governing equation is written in integral form, 

and the numerical equation is formulated directly from mass conservation 

consideration. The significance of the dependence of mass storage capacity 

upon elastic and inelastic deformation is emphasized. 

Familiarity with the mesh set-up procedure allows this integrated finite­

difference code to handle complex geometries and various modeling conditions. 

The mixed explicit-implicit scheme and other program controls allow efficient 

calculations of transient flows. 

The results of modeling consolidation in deformable soil indicate the 

importance of the dependence of fluid flow on deformation. The applications 

to well testing of simple fracture systems probe the numerical approach for 

handling discrete fractures. 

Further development of an auxiliary program for generating a mesh grid 

of complex fracture networks will be of interest. The modeling experience in 

soil consolidation can be extended to modeling inelastic fracture deformation. 
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CCC 

CCC (£onduction ~ £onvection ~ £onsolidation) is an integrated finite-

difference program which solves three-dimensional heat and mass flow equations 

in saturated media and computes one-dimensional deformations using the consol-

idation theory of Terzaghi. The model has been applied to problems in geo-

thermal reservoir engineering, aquifer thermal energy storage, well testing 

in porous and fractured media, radioactive waste isolation, and other fields. 

Details of the model are given by Lippmann and others (1977b), Mangold and 

others (1979, 1980), and Bodvarsson and others (1979). 

I. GOVERNING EQUATIONS 

The governing equations employed in the model are the mass and energy 

balance laws. The mass flow equation can be written in integral form as: 

£...!~ PdV Dt g 
v 1 w- -

- p q.dA 

A 

This equation applies to any element of volume V and surface area A containing 

solid rocks in vr and/or liquid water in vP. The storage coefficient S des­
s 

cribes the storage capacity of the element. It can be expressed in terms of 

the total compressibility ~m and the porosity~: 
p 

The energy equation can similarly be written in 

D 
mm f K,l'VT·dA -f w w - -

Dt 
p c TdV = p c oTq•dA 

A A 

w m = (jiP gp • p 

integral form as: 

+ f QlldV, 

v 
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m m where p c represents the integrated heat capacity of the volume elementu 

i.e. , 
mm ww rr 

p c ~ ~p c + (1~~)p c 

On the right~hand side of the energy equation, the first term represents 

heat conduction as expressed by Fourier's law, K being the thermal conductiv­
T 

ity of the rock-fluid mixture. The remaining terms are the convective term 

and the source term. In the convective term, CT denotes the interface temper~ 

ature, i.e., the temperature of the fluid entering the volume element. In the 

energy equation, local thermal equilibrium between the fluid and the rock is 

assumed. The energy changes due to fluid compressibility, acceleration, and 

viscous dissipation have also been neglected. 

The mass flow equation and the energy equation are coupled through the 

pressure- and the temperature-dependent parameters as well as through the con-

vective term. In the model, Darcy's law has been used to describe the fluid 

flux through fractures and porous media: 

q = w­
(VP-pg), 

where k is the absolute permeability, ~ is the dynamic viscosity of the fluid, 

and g is the acceleration due to gravity. The energy and mass flow equations 

are nonlinear with pressure/temperature-dependent parameters Pw, k, ~, KT, 

and c. Furthermore, the parameters $, s , and k are stress dependent. s 

Deformation 

The model employs the one-dimensional theory of Terzaghi to calculate the 

deformation of the medium. The basic concept in the theory is the relation-

ship between the effective stress cr' and the pore pressure P. For saturated 
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media, this effective stress can be written as o' = oN - P, where oN denotes 

the normal stress. The effective stress can easily be calculated from this 

equation at any time, given that the normal stress oN is known and remains 

constant. 

The consolidation behavior of each material is described by the 

"e -log O' curves", where e is the void ratio: e = vP;vr = rp/(1 <j!)• 

In practice, consolidation tests are used to obtain these curves for each 

material. A typical consolidation curve consists of a so-called virgin curve 

and a series of parallel swelling-recompression curves. When the rock is 

loaded to levels never before attained, the deformation is represented by the 

virgin curve, but for swelling or load levels below the preconsolidation 

stress, the deformation is represented by the swelling-recompression curves. 

( 'I'he model neglects hysteresis between swelling and recompression curves.) 

In the model 8 the "e - log o 1 curves" are generally approximated by straight 

lines, one of slope C (compression index) for virgin loading, and others of 
c 

slope C (swelling index) for unloading or low-level reloading. 
s 

The stress-dependent parameters in the governing equations, ~~ S , and k, 
s 

can easily be calculated, given the consolidation curves for each material. 

•rhe porosity is computed using the equation <j! = ej ( 1 + e), and the specific 

storage S can be calculated using the expression S 
s s 

The coefficient of compressibility a can be expressed as a 
v v 

-de/do' 
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In calculating the permeability k, the 

k "'k 
0 [

2.303 (e -

exp c 
k 

empirical relation is 

where k and e are arbitrary reference values of the permeability and void 
0 0 

ratio, respectively. For a given material, Ck is the slope of the best-fitted 

line of void ratio e versus log k. 
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II. NUMERICAL SOLUTIONS 

Finite-Difference Method 

The model uses the integrated finite-difference method to discretize the 

flow regime and to handle the spatial gradients. The flow regime is divided 

into arbitrarily shaped polyhedrons constructed by drawing perpendicular 

bisectors to lines connecting nodal points. This permits easy evaluation of 

the surface integrals in the governing equations (Edwards 1972• Narasimhan 

1975; and Sorey 1975). 

In numerical notation the governing equations can be written as follows: 

Mass balance: 

(S V) 
s n 

g 

Energy balance: 

m m 
(p c V) 

+ 

D.P 
n 

b.T 2 [ (KA) n n,m 
D.t d + d n 

m num m,n 

( w wkA) ( p -12 c ( T ) 
dnu: ll n,m n,m + 

(T - T ) m n 

p 
n 

- Pw g)]+ (QHV)n. d n,m m,n 

These equations are valid for an arbitrary node n connected to an arbi-

trary number of nodes m. The nodal point distances to the interface for node 

n and node m are represented by d and d • 
n,m m8 n 
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Upstream Weightin2 

To evaluate the interface temperature T u the model employs an upstream 
n,m 

weighting criterion 

T ~ aT + (1 ~ a)T • 
num n m 

In this equation, a, the upstream weighting factor, is restricted in value to 

the range of 0.5 ~ 1.0 for unconditional stability. 

Implicit Formulation 

In the model, the equations are solved implicitly to allow for larger 

time steps to be taken. The implicit formulation is incorporated by means of 

the following expressions: 

T To + A.11T n' n n 

T = To + A.I1T mu m m 

p = Po + AAP D n n n 

The weighting factor A is generally allowed to vary between 0.5 and 1.0 for 

unconditionally stable solutionsu but it may also be specified as a constant. 

If A is to be 0 during the simulation, the solution scheme is fully 

explicit (forward differencing) 8 and the time step cannot be greater than a 

critical stable value (see Narasimhan 1975). If A. = 0.5, the Crank-Nicholson 

(central-differencing) scheme results. For A = 1.0, a fully implicit (back-

ward differencing) scheme is employed. 
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Spatial Gradients 

The spatial gradients between nodes are estimated by a linear approxi~ 

mation, 

p ~ p 
m n 

d + d n,m m,n 

The permeability and thermal conductivity of the matrix and the density 

of the fluid at the interfaces are evaluated using the harmonic means to pre-

serve continuity of flux at the interface, as for example, 

k 
m,n 

k k 
m n 

d + d 
m,n n,m 

k d + k d m n,m n m,n 

Direct Solver 

With implicit formulation, gradient approximation, and coefficient eval~ 

uation, the governing equations can be written in the forms: 

C ~p - c ~p 0 q n,n n n,m m n 

K .. ~T - K .. ~T + K. ~p - K. AP B .• 
1., 1. n l.,J n 1,n n 1,m m l. 

These two equations can be combined into a single matrix equation 

[A]{X} ~ {b} for simultanteous solution, where the matrix [A) consists of the 

coefficients C , ••• and K .. , ••• • These are in general a function of the 
n,m 1, 1. 

temperature and pressure, and therefore result in a set of nonlinear equations. 

The vector iXi contains the unknowns ~P and ~T, and the vector tbJ repre-

sents the known explicit quantities. 
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The solution of the nonlinear set of equations is obtained using an 

efficient direct solver (Duff 1977) and an iteration scheme for the nonlinear 

coefficients. Basically, the solver uses LU decomposition and a Gaussian 

elimination procedure to solve a set of linear equations. 

The matrix of coefficients (the [A] matrix) is preordered using permuta­

tion matrices such that the resultant matrix is in lower-triangular block form. 

Gaussian elimination is then performed within each diagonal block in order to 

obtain factorization into the lower triangular and the upper triangular. 

Finally, the factorization is used to solve the matrix equations. In this 

solution package (Duff 1977), no restriction is placed upon the characteris­

tics of the matrix of coefficients. The matrices need not be symmetrical or 

of a specified degree of sparsity. 

The nonlinear coefficients are presently handled using an iteration 

scheme. Future development of the code includes incorporating the Newton­

Raphson scheme for efficient and accurate determination of the nonlinear 

coefficients. 
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III. COMPUTER CODE 

Documentation 

The code is written in Fortran IV language. The code listing and a user's 

manual are available from M. J. Lippmann at Lawrence Berkeley Laboratory. 

Grid 

In the model there is no restriction upon choice of basic block (node) 

shape or numbering of nodes. The geometric configurations of the nodal ele­

ments can be arbitrary, and the grid may be one-, b1o-, or three-dimensional, 

with rectangular, cylindrical, or spherical symmetry. The dimensions of the 

nodes and the connections between nodes are required input data. For complex 

problems, the design of the mesh may create the most difficulty in using the 

program. Auxiliary computer programs for mesh and input data generation are 

available for a number of grid systems, including the case with cylindrical or 

elliptical rings near a well, gradually changing to rectangular nodes in the 

far field. This mesh is relevant for the simulation of horizontal or inclined 

fractures intersecting a well (cylindrical or elliptical cross sections) or 

intersecting other planar fractures within the rock mass (linear cross 

sections). 

Material 

For each material the porosity, permeability, specific storage, thermal 

conductivity 8 heat capacity, and density of the solid must be specified. 

These parameters may be constant or may vary with temperature andjor effec­

tive stress. The porosity and specific storage can vary with the effective 
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stress, the permeability with both temperature and effective stress, and the 

thermal conductivity and heat capacity with temperature only. These relations 

are specified by tables, interpolated during each time step. Anisotropic 

permeability can be handled by orienting the grid blocks parallel to the prin-

cipal axes of anisotropy. 

Fluid 

Input parameters are the fluid viscosity, heat capacity, density, and 

compressibility of water. A constant value of the compressibility must be 

specified; other fluid properties may also be assumed constant. However, the 

code provides the option of specifying viscosity and heat capacity as func-

tions of temperature and specifying density as a function of temperature and 

pressure. An empirical formula is used for the density function, and the code 

interpolates input tables for the appropriate value of the viscosity and heat 

capacity during each time step. 

Sources and Sinks 

Mass and energy sources and sinks may be specified for any node. The 

rate may be constant or vary with time. 

Initial Conditions 

Initial values of pressure, temperature, and preconsolidation stress must 

be for t'!ach grid block. If the restart option is utilized, the 

tied initial values must correspond to the final values obtained in the 

last run. 
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Conditions 

Prescribed potential or flux boundaries may be used. The boundaries can 

be specified as constant or varying with time. Finite capacity wells (well~ 

bore storage) and heterogeneous flow regimes (fractures) can easily be sim~ 

ulated. 

Time and Solution Control 

There are several options for selecting the time steps to be taken during 

the simulation. The maximum and minimum time steps may be specified, or the 

time steps may be automatically determined on the basis of the maximum desired 

pressure and/or temperature changes during a time step. The problem is ended 

when one of several criteria is met. These include attainment of steady state, 

reaching the specified upper or lower limit for temperature andjor pressure, 

completing the required number of time steps, and reaching the specified maxi­

mum simulation time. 

Output 

Output is provided according to specified times or specified time steps. 

The pressure, temperature, and first- and second~order derivatives are printed 

for each grid block (node). The fluid and energy fluxes are given for each 

connection. The mass and the energy balance are also included in the output. 
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IV. VALIDATIONS 

The code has been validated against analytic solutions for fluid and heat 

flow, and against a field experiment for underground storage of hot water. 

The following is a list of selected problems. 

Analytical Solutions (Fluid and Heat Flow) 

(a) Continuous Line Source: The Theis problem (1935) was solved for both 

early times (transient flow) and long~term steady radial flow. 

(b) Cold Water Injection in a Hot Reservoir: Avdonin's (1964) analytical 

results were matched for early and later times. 

(c) Doublet Problem: The temperature variations at the production well 

due to cold water injection were matched against the analytical results 

of Gringarten and Sauty (1975). 

(d) Conduction Problem: A one~dimensional conduction problem was solved and 

compared with the analytical solution given by Carslaw and Jaeger (1959). 

(e) Two Node Problem: Transient conduction heat transfer between two nodes 

was calculated and compared to analytical solutions. 

(f) Buoyancy Flow: The rate of thermal front tilting when hot water was 

injected into a cold reservoir was calculated and compared to semiana~ 

lytic results by Hellstrom and others (1979). 

Fracture Flm·r Solutions 

(a) Vertical Fracture: The pressure response in a well intercepting a 

finite~conductivity vertical fracture was calculated and compared to the 

semianalytic solution of Cinco~Ley and others (1978). 
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(b) Horizontal Fracture: The pressure response in a well intercepting an 

infinite conductivity horizontal fracture was calculated and compared to 

the analytical solution of Gringarten (1971). 

Auburn University Aquifer Thermal Energy Storage Field Experiment (1979) 

Numerical modeling of two cycles of injection, storage, and production 

of hot water in a confined aquifer yielded results that closely matched tern~ 

peratures and energy recovery factors observed in the field (Tsang and others 

1979a). 

V. APPLICATIONS 

This model has been applied to problems in the fields of geothermal reser~ 

voir engineering, aquifer thermal energy storage, well testing, radioactive 

waste isolation, and in-situ coal combustion. 

Geothermal Reservoir 

(a) Simulation and reinjection studies have been done using data from the 

Cerro Prieto geothermal field (Lippmann and others 1978; Tsang and others 

1979b; and Lippmann and Goyal 1979). 

(b) Generic studies have been made for injection and production in geothermal 

reservoirs (Lippmann and others 1977b). 

(c) Theoretical studies have been made of subsidence in geothermal reservoirs 

due to fluid withdrawal (Lippmann and others 1976, 1977a). 

(d) Studies have been made of flow through fractures in geothermal reservoirs 

(Bodvarsson and Lippmann 1980). 
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Aquifer Thermal Energy Storage 

(a) Many generic studies have been performed to demonstrate the feasibility 

of sensible heat storage in aquifers (Tsang and others 1976, 1978a, 1978b). 

(b) The Auburn field experiments in aquifer storage were modeled successfully 

(Tsang and others 1979a). 

Well Tes 

(a) Studies of well behavior in a two-layered system with a temperature 

gradient have been made (Lippmann and others 1978; Tsang and others 1979b). 

(b) The effects of an alternative production-injection scheme on the tempera-

ture and the pressure response of a geothermal system have been studied 

(Lippmann and others 1977a; Tsang and others 1978c). 

(c) A study was made of temperature effects in well testing in a single-layer 

system (Mangold and others 1979). 

Radioactive waste Isolation 

(a) A study was made to examine the conductive heat transfer near a reposi-

tory (Chan and others 1978). 

(b) A generic study was performed for a fracture system through a repository. 

These simulations were for periods of up to 10 8 000 years (Wang and others 

1980; Wang and Tsang 1980). 

In~Situ Coal Combustion 

Calculations were performed to investigate the time required for thermal 

effects to reach the surface from underground combustion of a coal seam 

(Mangold and others 1978). 
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VI. SUMMARY 

This model is for the study of fluid flow and heat transfer in deformable 

formations. The integrated finite-difference method is used to formulate the 

governing equations and to discretize the saturated medium. Complex geometries 

and coupled thermohydrologic processes can be modeled. 

The code has been well validated and extensively applied to geothermal 

reservoir engineering, to aquifer thermal energy storage studies, and to field 

experiments in porous formations. The recent modelings of fracture flows and 

buoyancy flows are extensions to fractured media and waste repository studies. 
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MODEL OF DUGUID 

This is a finite-element program for two~dimensional isothermal flow in a 

double-porosity medium. The transient fluid interaction between the fracture 

and the porous medium and flow acceleration along fractures have been studied. 

The model is described in Duguid (1973), Duguid and Lee (1973, 1977) and 

Duguid and Abel (1974). 

I. GOVERNING EQUATIONS 

In this double-porosity model, the set of governing equations consists of 

two coupled fluid flow equations with two Darcy-like velocity equations: 

m' 
-f f(t) 

( 1 - <Pm><PfS w + (1 - <Pm)<jlmSw ~ + 'il • q = p at P at w 
p 

m' f' 
f{t) 

( 1 - <Pf><PmSw ~+ ( 1 - <l>f> f6w ~ -m + 'il • q = p at <P P at w 
p 

-f 
q = -

-m 
q 

where P 1 (x,t) 

f 
The pressure P 

P(x,t) - P (x) and the gravitational effect is subtracted. 
0 

-f 
and the flux velocity q represent the macroscopic values 

averaged over the fractures in the vicinity of x. 
m =m 

P and q are the corres-

ponding values for the rock medium blocks. A rock medium block consists of 

the rock matrix and the primary pores. In this model it is assumed that the 

fracture porosity <Pf is typically much smaller than the rock medium porosity q,m, 
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while the equivalent continuum fracture permeability kf is much greater than 

the rock medium permeability km. f m The total pressure is P = P + P • 

Fracture-Rock Medium 

The two fluid flow equations are coupled by the transient mass flux f(t). 

One analytic expression of this fluid interaction term is: 

I'(t) 
fm 

a 
=--

f' 
- p ) + 2 

where afm = 4km~fpwjnb 112L, b
112 

is the half-aperture of an average fracture, 

and L is the characteristic half-dimension of a rock medium block. Duguid and 

Abel (1976) used a slightly different form of f(t). The form of I'(t) shown 

here is similar to that used in leaky aquifer analysis (Bredehoeft and Pinder 

1970) and represents the mass flux from the rock medium blocks through the 

fracture surfaces into the fractures. The factor km in the flow-coupling con-

fm f stant a accounts for the flow in the rock medium blocks, and the factor ¢ /b 

in afm accounts for the surface areas of fracture-medium interfaces per unit 

volume. The time constant of the transient exponential in f(t) depends only 

on the characteristics of the rock medium blocks (km, L) and is independent of 

the fracture flow. The rock matrix blocks essentially act as the fluid source 

to the fractures in the model. The quasi-steady fracture-medium fluid inter-

m' f' action f is proportional to the pressure difference P - P (Barenblatt and 

others 1960). 
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Porosi and Consolidation 

The fluid flow equations are coupled not only through I' but also through 

the time derivatives of pressures. This coupling results from the interchange 

of the two porosities with time. As the fluid pressures decrease, consolida-

tion can occur through the rearrangement of the skeleton. This rearrangement 

alters the size of fractures and primary pores. Two mechanisms have been con-

sidered for the interchange of the fracture volume with the pore volume. The 

first mechanism is induced by the changes of fluid density with the pressures 

in each of the porosities. These contributions are included in the governing 

equations, as can be shown by the appearance of the fluid compressibility ~; 

in all the storage (fluid capacity) coefficients multiplying the time deriva-

tives of pressures. The second mechanism formally considered by Duguid and 

Lee (1977) is due to the mechanical deformations of the two porosities. The 

gradient of rock solid velocity V·~r could be retained in the double-porosity 

fluid flow equations to account for the effects of rock deformation in a sim-

ilar manner as in the consolidation theory of single-porosity porous media 

(Verruijt 1969; Biot 1941, see also Aifantis (1979) for a recent paper on 

double-porosity equations). The couplings of the inelastic and elastic defor-

mations of fractures and porous media to fluid flow would affect the storage 

capacities of the double-porosity flow systems. 

Fracture Flow Acceleration 

The flows in the fractures are usually much faster than the flows through 

the porous-medium blocks. In this model, Darcy's law for fracture flow is 

w -f generalized, with the inclusion of the acceleration term p 3q /at. The gen-

eralized Darcy equation is derived by spatially averaging the Navier-Stokes 
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equation of motion for incompressible flow inside the individual fractures 

over a large spherical volume (Lew and Fung 1970). The fractures are repre~ 

sented by tubules with elliptical cross sections. One of the assumptions is 

that the velocity distribution within the tubule is parabolic (Poiseuille 

flow). This is valid if the compressible viscous force and the convective 

term are neglected and a steady-state flow profile is maintained. The inflow 

through the porous wall around the tubule will not change the parabolic dis~ 

tribution if the inflow is constant along the tubule (Berman 1953; Yuan and 

Finkelstein 1956; Duguid 1973). Another assumption in the space averaging is 

that the spherical volume is large enough to contain a representative number 

of tubules. The intersection of a single elliptical tubule with the spherical 

surface is assumed to be small enough so that the volume integral can be re~ 

duced to an angular integral over the distribution of the direction of tubules. 

As a result of these assumptions, the equivalent continuum fracture permeabil-

ity tensor can be formally expressed as 

where A is the cross-sectional area of the tubule and b
112 

is the half-width 

of the minor axis of the tubule or the half-aperture of the fractures. The 
A 

pore matrix function f(r, Q) is defined statistically as the number of oriented 

tubules per unit area per unit solid angle. Au is a parameter for compensating 

entry and exit effects at tubule intersections. f(r, ~) and A' are usually 

unknown. In the model, is an input parameter. 
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Summary of Double-~orosity Couplings 

In brief, the governing equations in the model include the effects of 

the fracture flow acceleration, the transient flow interaction between the 

fractures and the porous medium, and the coupling of porosity changes. The 

double-porosity system is described by two pressure fields coupled by flow 

between the fractures and the porous medium and by the interchange of the two 

porosities. Each porosity depends on both the fracture pressure and the 

porous-medium pressure. Within each porosity, the flow flux is driven mainly 

by its own pressure gradient. For completeness, one could also phenomeno-

-f f' m' logically propose that the fracture flow flux q depends on both VP and VP 

and similarly qm on both pressure gradients. The importance of the cross 

terms due to interdependence of the two pressure fields and the two flow 

velocity fields may require further study. 

II. NUMERICAL SOLUTIONS 

Finite-Element Method 

The coupled set of equations is solved by the finite-element Galerkin 

method. The code is capable of solving coupled linear equations with several 

unknowns at each node. For two-dimensional problems in the x-z plane, there 

o.re six equations in six variables. The variables are the incremental pres-

f1 m1 f f m m 
sures p· and P and the components of fluxes qx' q

2
, qx' qz. Quadrilateral 

elements are used to divide the planar space. A variable within an element 

is interpolated in t.erms of the values of the variable at the four corner 

nodes. The trial solution is substituted into the differential equations. 
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The space-differential operators operate on the basis functions used for the 

interpolation. Isoparametric bilinear polynomial basis functions are used. 

The residue of the trial solution is integrated over the element weighted by 

the basis functions. The integration is carried out using 2 x 2 Gaussian 

integration. 

It is of interest to point out that in the governing equations there are 

only first-order spatial gradients with both pressure and Darcy flux velocity 

as unknown variables. The Darcy velocity of the porous-medium block qm can 

be eliminated by substituting qm into the fluid flow equations in the porous 

medium. This procedure reduces the six unknowns to four unknowns. If the 

-f 
acceleration term in the fracture flux equation is not modeled, the q can al-

so be eliminated and only two pressure equations need to be solved. In these 

elimination procedures, second-order gradient terms will appear in the govern-

ing equations. These second-order terms are usually treated with Green's 

theorem in most of the finite-element solutions of fluid flow equations. For 

the proper treatment of boundary conditions in a double-porosity model, there 

is a need to maintain the general six first-order equations (see "Boundary 

Conditions" in next section). 

t Time Difference 

First-order finite difference is adapted to approximate the time deriva-

tives. A backward-differencing implicit scheme (A = 1) or a central-differ-

encing Crank-Nicholson scheme (A ~ 0.5) may be used to construct the implicit 

matrix equation relating the unknown nodal values at t + ~t to those at t. 
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For m nodes in the flow regime, the 6m x 6m backward~differencing implicit 

matrix equation is of the form: 

where matrix [A] contains the coefficients of the time derivative terms and 

[B] contains the spatial operators which are associated with the variables. 

The column vectors tf} contain the 6m nodal values of the variables 1 and tRJ 

is zero in this formulation unless prescribed flux boundary conditions are 

applied. 

Matrix Solver 

The matrix equation is solved by a direct elimination procedure. The rna-

trix [A]/~t + [B] is decomposed into the product of lower- and upper-triangular 

matrices using the Crout or the Doolittle method. This reduces the matrix 

equation into two triangular systems which can be solved by backward and for-

ward substitution procedures. Since the fluid interaction f(t) is transient, 

[B) is time-dependent. The decomposition of [A]/~t + [B] must be reformulated 

at each time step. 

III. COMPUTER CODE 

Documentation 

The code li is available from J. Duguid at. the Office of Nuclear 

wast~!! Isolation in two versions: IBM-360-91 and CDC 6500 (CYBER 73). 

Grid 

The two"·chmensional grid consists of four-corner quadrilateral elements. 

For the solu·t:ion of two-dimensional aquifer problems discussed later, the 
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coordinate system was selected parallel to the principal values of the permea~ 

bility tensor in the fractures. The coordinate system was also assumed to be 

parallel to the length and thickness of the aquifer. 

Material 

The two principle values of the equivalent continuum fracture permeabil~ 

ity tensor, the isotropic rock medium permeability, the fracture porosity, and 

the rock medium porosity are input data and can vary spatially with different 

elements. The average fracture aperture, the characteristic size of the rock 

medium blocks, and the fracture-medium fluid coupling coefficient are also 

input parameters for calculating the transient flux f(t). 

Fluid Properties 

water density, viscosity, and compressibility are input parameters. The 

water compressibility is used in the calculation of the storage coefficients 

and the transient exponential of f(t). 

Initial Conditions 

The initial conditions are zero values of incremental pressures and fluxes. 

Conditions 

The boundaries of the system can be applied with prescribed pressure or 

flux boundary conditions which are constant or time variable. An analytic 

expression for a leaky flux boundary is used. Since there are two flux veloc­

ities in a double-porosity model, the partition of the total flux between the 

fractures and the rock matrix blocks is not known if only the total flux at 

the boundary is prescribed. The general program solving all six of the first-
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order governing equations simultaneously allows treatment of this type of 

boundary condition. For prescribed pressure boundary conditions, or when the 

partition of flux between the two porosities are known, simplified equations, 

m' f' -f solving only P , P , and q can be used. This code allows treatment of the 

acceleration term in the fracture flow equation and can be further simplified 

if the acceleration effect is shown to be small. 

Time 

The time step is small at early times and can be increased logarithmic-

ally at each time step. 

Output 

The calculated results are the pressures and flux velocities representing 

the macroscopic values averaged over the fractures and over the porous-medium 

blocks. 

IV. VALIDATIONS 

The validation of this program is only briefly mentioned in Duguid and 

Abel ( 1974). Numerical solutions were obtained for a one~dimensional problem 

in a finite rod using both central~differencing and backward-differencing 

schemes. The instability problem for the central~differencing approach and 

the error~propagation problem for the backward~differencing approach were 

inves Some two-dimensional plane~strain problems were also mentioned 

in demonstrating the use of the code. It will be of interest to model radial 

problems and compare the numerical results with known analytic solutions of 
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well response to double-porosity media. The double-porosity model has been 

used mainly in well testing analysis. 

V. APPLICATIONS 

The code has been applied to the solution of problems in a fractured, 

porous leaky aquifer. The aquifer is confined above by an impermeable boun­

dary and semiconfined below by an aquitard. Leakage from the aquitard is 

assumed to occur in both the primary pores and the fractures in the aquifer. 

The horizontal fractured porous aquifer is intersected by a stream (vertical 

boundary) which is initially in equilibrium with the aquifer. At time t = 0 

the water level in the stream is instantaneously lowered and the step drawdown 

is maintained constant thereafter. In an alternative problem, the total dis­

charge rate from the aquifer to the stream is assumed to be constant instead. 

The first response occurs in fractures which are of larger size than the 

primary pores. From the numerical solutions of the problems in rectangular 

coordinates considered in this model, the following conclusions were drawn: 

(a) The flow from the porous-medium blocks to the fractures is important, 

even when the permeability of the primary pores is small. For the step 

drawdown problem the transient pressure drop with kf = 300 km (and 

$f = 0.017 ~m) is substantially slower than the response with km = o. 

With km = 0 8 the flow in the porous-medium blocks is neglected. With the 

termination of the supply of fluid to the fractures, the rate of response 

in the fractures increases. 

(b) After very short times, the pressure in the fractures is nearly equal 

to the pressure in the porous-medium blocks and the gradients of these 
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pressures are nearly equal. As a result, the discharge is divided be~ 

tween the fractures and the porous~medium blocks according to the ratio 

of fracture permeability to porous~medium permeability. Large storage 

coefficients for more compressible formations may prolong the early tran­

sient period. 

(c) The response of the aquifer is slowed by the transient interaction term. 

The slower response is explained by a greater flux at early time flowing 

from the porous-medium blocks into the fractures when transient interac­

tion is considered. There is, however, only a slight difference between 

the pressure solutions corresponding to transient and steady-state inter­

action terms in the problems studied. From the exponent of the transient 

term r, the transient effect is greater for porous-medium blocks having 

large dimension and low permeability than for small, more permeable blocks. 

Therefore, the transient interaction may be more important for deep, 

slightly fractured, low-permeability formations. 

(d) The effect of the acceleration term in the equation of motion of fluid 

in fractures is small for the problem studied in the model. The acceler~ 

ation term may be neglected, and the simplified set of equations, with 

elimination of the velocity terms, can be used. 
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VI. SUM!~RY 

'I'his code is for studying isothermal flow in a double-porosity model of 

a fractured rock mass. The governing equations for the pressure changes in 

the fractures and in the porous-medium blocks are coupled both through the 

interdependence of the values of the two porosities and through the transient 

flux between the two porosities. 

With space averaging over an elliptic tubule model for the equation of 

motion of fluid in fractures, it is shown that the anisotropic fracture per­

meability tensor can formally be expressed in terms of a pore matrix function 

for the distribution of the orientation of tubules. 

The effect of the acceleration term in the equation of motion can be 

studied by the finite-element code, which has the capability of solving 

coupled first-order equations of pressures and fluxes in fractures and pores. 

The results of rectangular, two-dimensional modeling of a fractured 

porous aquifer demonstrate the importance of the flow in the porous medium to 

the aquifer response, the small difference between the fracture pressure and 

porous-medium pressure, and the small effects of the transient interaction 

term and the acceleration term. 

The extension to radial well problems and other applications using this 

model should be continued. Documentation of the code and validation are 

needed. It will also be of great interest to extend this model for use in 

solving the coupling of the double-porosity fluid flows with the deformation 

in the fractures and the consolidation in the porous-medium blocks. 
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MODEL OF 0 1 NEILL 

This is a finite-element model for three~dimensional, nonisothermal, 

saturated flow in a double-porosity medium. The responses due to hot water 

injection and the coupling of the temperature equations in the fractures and 

in the porous medium have been studied. The model is described in O'Neill 

(1977, 1978). 

I. GOVERNING EQUATIONS 

In this model there are three governing equations for the fluid flow and 

heat transfer in a double~porosity medium: one pressure equation and two 

temperature equations. Each point in space has two temperature values repre-

senting the macroscopic values averaged either over the fractures or over the 

porous~medium blocks. A porous-medium block consists of the rock matrix and 

the primary pores. 

The pressure equation for the combined fluid flow through the fractures 

and the porous medium is: 

( 
=f =m) w w aP' w w aT w k k P (<PI3 + t:>P)- - p q>!3 - ~ v·p - + ~ ·vP' P P &t T at f m 
~ ~ 

f 
where the porosity ~ is the sum of the porosity of fractures ~ and the poros-

. m f m 
ity of the pores in the porous med1um ~ : $ = $ + ~ • The water temperature 

is the weighted average of temperatures in the fractures and in the pores, 

f f m m 
T = (~ T + ~ T )/4• The response of water density and the response of pores 

to pressure change are assumed to be elastic with constant compressibilities 
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w p 
8p and ~p' respectively. The thermal expansivity of water density to temper-

w 
ature change ~T is also constant. P 1 is the incremental pressure above the 

the hydrostatic pressure. The gravitational effect due to water density vari-

ation is neglected. 

The equations for temperature in the fractures and in the porous medium 

are: 

fm f m w m b m = h (T - T ) + c QF(T - T ). 

In this model, the external heat sources are associated with injection of 

water at temperature Tb. The partition of the fluid mass source QF 

m f m 
and QF is assumed to be according to the permeability ratio QF/QF = 

on 

i 
In addition to the thermal conductivities KT, the temperature equations 

also include the hydrodynamic thermal dispersivities K~. In this model, the 

thermal dispersivities are diagonal tensors and are dependent on the water 

-i -i i 
particle velocities v = q I <P according to 

{ 

d51, <vi> 
T m n 

0 

m = n 

m * n 
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~i 
where the constant coefficients of dispersivity DT are specified in the input 

of the program. 

Fracture-Porous Medium Heat Interaction 

The temperature equations are mainly coupled through the term for heat 

transfer between fractures and porous media: ±hfm(Tf - Tm). In the program, 

hfm is constant in time and is an input parameter in modeling the coupling 

between the fracture temperature and the porous~medium temperature. The cou­

pling coefficient hfm accounts for the heat conduction from the porous-medium 

blocks to the fractures and the heat dispersion due to mixing of fluid across 

the interface between the fractures and the porous medium. In the detailed 

formulation of these temperature equations by a volume-weighted space-averaging 

procedure, 0 1 Neill formally expresses the heat transfer from the fractures to 

the porous medium in terms of surface integrals over the interfaces and then 

estimates analytically the relative importance of conductive and dispersive 

contributions. The conductive part is proportional to the thermal conductiv-

ity of the porous medium, and inversely proportional to the size of the porous-

medium blocks. The dispersive part is proportional to the pore velocity and 

the correlat.ion of temperature variations and velocity variations over the 

interface. Moreover, the geometric features in the two contributions to the 

coupling coefficient are different. The conductive part for heat flow from 

the porous-medium blocks to the fractures is proportional to the interface 

area between the fractures and the porous medium with both the solid rock and 

the primary pores. On the other hand, the dispersive part for fluid mixing is 

proportional to the interface area between the fractures and the primary pores 
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only. From estimates with typical thermal and fluid flow properties, O'Neill 

concludes that hfm is dominated by the conductive contribution from the porous~ 

medium blocks to the fractures. 

The temperature equations are also coupled through the flow equation. 

The flow equation has a time derivative of temperature from the dependence of 

water density on temperature. The temperature also affects the viscosity of 

water in both the fractures and the porous medium. The fluid flow equation 

couples back to the temperature equations through the velocities. The Darcy 

-f -m 
flux velocities q and q from the solutions of the fluid flow equation appear 

in the convective heat transfer terms and in the dispersive flux terms of the 

temperature equations. 

Double-Porosity Couplings 

This model is a generalization of the isothermal double-porosity model of 

Barenblatt and others (1960) to nonisothermal flow. Between the fractures and 

the porous media, the quasi-steady transfer ± hfm(Tf - Tm) in the temperature 

equations is analogous to the fluid mass transfer term ± afm(Pf - Pm) in the 

isothermal pressure equations. In a thermodynamic description of a double-

porosity medium, each point in space is formally characterized by two pres-

sures and two temperatures, one representing the fractures and one the porous 

medium. In this model for hot water injection, the pressure difference is 

assumed to equilibrate very quickly and can therefore be neglected. 
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II. NUMERICAL SOLUTIONS 

Hermite Finite~Element Method 

The model solves the governing equations with the Galerkin finite~element 

method using hermite polynomials as the basis functions. The three~dimensional 

space is decomposed into finite-element domains with eight-corner nodes. The 

three-dimensional basis functions, used for interpolation, are constructed by 

multiplying together the one-dimensional hermite polynomials in each coordi-

nate. A hermite polynomial is a cubic polynomial with the property that it is 

nonzero only in either its value or its derivative at one of the two nodes in 

a one~dimensional element. There are four independent hermite polynomials: 

two with unity value, two with unity derivative. Using the four hermite basis 

functions, a variable within an element can be interpolated in terms of its 

values and its derivatives at the two nodal points. In the three-dimensional 

domain, every variable at each node has one value and three partial derivatives 

with respect to three coordinates. For m nodes in a modeled domain, a variable 

is expressed in terms of a vector of 4m nodal variables. In this model with 

one pressure equation and two temperature equations, a 4m x 4m matrix equation 

for the pressure and an 8m x 8m matrix equation for the two temperatures are 

constructed to represent the governing equations. 

The matrix equations are constructed by integrating the residue of the 

interpolated trial solutions over each element weighted by the basis func-

tions. Most of the element integration is carried out using 2 x 2 x 2 Gaussian 

quadrature except for the evaluation of the hydraulic conductivity term of 

w =f f =m m i 
p (k /~ + k /~ ) in the fluid flow equation. Since the water viscosities ~ 
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depend sensitively on the temperatures, the nodal values of the hydraulic con-

ductivity are first determined by the nodal values of temperature, then linear 

functions are used to interpolate within the element and a 3 x 3 x 3 Gaussian 

quadrature is used for the integration. On the other hand for the temperature 

equations 8 the Darcy velocities in the convective term and in the dispersive 

term are more accurately evaluated at Gauss points within an element rather 

than interpolated from nodal values of pressure. In this case, the use of 

2 x 2 x 2 Gaussian integration is sufficient. The products of basis functions 

and Gaussian weighting factors in the element integrations need be computed 

only once for each of the elements for all time steps, and can be stored in 

the program. 

Iterative Procedure 

A first-order finite difference in time with a backward-differencing 

implicit or a central-differencing Crank-Nicholson scheme is used to construct 

the implicit matrix equations relating the variables at t+~t to those at t. 

Since the pressure solution usually reacts to changes more rapidly than the 

temperature solution, the pressure equations may be solved first for a number 

of time steps in succession during the period covered by one step in the 

temperature equations. Within each temperature time step, the pressure and 

temperature equations are solved in an iterative procedure. One iteration 

from the kth step to the (k+1)th consists of (i) solving the P~:lt with 

k 
the coefficients determined by Tt+8t' (ii) calculating Darcy velocities with 

k+1 k+1 
Pt+~t' (iii) solving Tt+~t with the Darcy velocities in the convective and 
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dispersive terms, and (iv) calculating the hydraulic conductivities and the 

k+1 
time derivative of temperature with Tt+At" These coefficients are needed for 

(i) in the next iteration. A given number of iterations are performed for 

each temperature time step. 

Matrix Solver 

The matrices have asymmetric nonzero elements and symmetric zero struc-

tures. For the solution of the implicit matrix system of either the 4m x 4rn 

pressure equation or the 8m x 8m temperature equation, the algorithms of 

Eisenstat and Sherman (1974) are incorporated in the program. In the matrix 

solver, the coefficient matrices are stored in a one-dimensional array in en-

velope form, with only the matrix elements between and including the first and 

last nonzero elements in each row retained in storage. A sparse matrix facto-

rization procedure on envelope elements is used. 

III. COMPUTER CODE 

Documentation 

The userus manual with program listing and a sample problem are in the 

report by 0 1 Neill (1977). The program was run on the IBM 370-158 Virtual 

Machine at Princeton University. 

Spatial Grid 

The applications of this program use orthorhombic (three-dimensional rec-

tangular) elements with eight-corner nodes generated in the code. The nodal 

separations can be nonuniform. The coordinate axes are oriented parallel to 

the principal directions of the permeability tensors. 
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Material 

For the pressure equation, the input material parameters are the princi-

values of the permeability tensors and the porosities of the equivalent 

continuum fractures and the porous-medium blocks. For the temperature equa-

tions, the input data are the thermal conductivities, the dispersion coeffi-

cients of both porosities, and the rock density and specific heat capacity. 

All these parameters can vary in space with different elements. The heat 

transfer coefficient hfm and the pore compressibility sp are constant input 
1? 

data for the whole model domain. 

Fluid 

The compressibility p; and the thermal expansivity s; of water are re-

quired for the pressure equation. The viscosity of water as a function of 

temperature is calculated in the program according to the relation used by 

Mercer and others ( 197 5) : 

3 3 2 3 
(5.38 X 10 + 3.8 X 10 A- 2.6 X 10 A ) kgjmjsec, 

where A 

Sources and Sinks 

Point source/sink of fluid injection/withdrawal with given temperature 

can be specified at nodes. An analytic expression for a continuous point-

source solution is used for calculating pressure gradients within the first 

element which encloses the point source. 
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Initial Conditions 

The nodal values and/or the gradients of pressure and/or temperatures can 

be assigned to all nodes at the initial time or at the restarting time. 

conditions 

Prescribed values and/or gradients of pressure and/or temperatures are 

specified on boundary nodes. 

Time S 

The heat contents of fracture and rock medium systems can be calculated 

for each time step. Time stepping can be specified by the size of the first 

temperature time step, the number of time steps in the solution of the temper~ 

ature equations, the number of equal time steps in the solution of the pressure 

equation per temperature time step, or the number of iterations per temperature 

time step. The temperature time steps can be increased by multiplying each 

previous step by a common factor. 

Output 

The values of pressure and temperature and/or their gradients for selected 

nodes are output at specified time step printing intervals. The values of the 

variable can also be printed out for points not on the node by interpolating 

with the hermite basis function. 

IV. VALIDATIONS 

Several tests of the program are documented. The numerical solutions of 

linear and spherical radial problems are compared with analytic transient 
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solutions. The problems solved for validation are listed below: 

(a) varying Hydraulic Conductivity: The linear flow equation is solved for 

the case in which hydraulic conductivity is x2j(1 + t). 

(b) Temperature Coupling: The temperature equations coupled through 

h(Tf - ~) are solved for the case in which there are no spatial 

gradients in the temperature equations. 

(c) Exponential Decay Fluid Source: The linear flow equation is solved with 

a uniform exponential decay source. 

(d) Temperature Front Movement: The linear temperature front movement in a 

constant flow field is calculated to test the convective-dispersive 

equation. 

(e) Point Source of Mass and Heat in Linear, Constant Flow Field: An 

analytic solution is obtained by O'Neill with the use of coordinate 

transformation, Fourier transform, and Laplace transform. The numerical 

solutions downstream from the point source agree with the analytic solu­

tion. The temperature up-stream from the source changes steeply and 

induces some oscillation in the vicinity of the point source. 

(f) Continuous Point Source: The numerical solution is obtained with ortho­

rhombic elements to test the use of a three-dimensional rectangular grid 

for this spherically symmetric problem and to study the numerical problem 

near the point source. 
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V. APPLICATIONS 

The program has been applied to the simulation of temperature front 

movements in fractures and in porous media. Two cases are studied: a linear 

constant-velocity flow system in response to a step change of temperature at 

x ~ 0 0 and a divergent flow system after injection of hot water at a given 

temperature and flow rate. Most of the results are obtained by solving the 

coupled temperature equations with the given fluid velocity field. From these 

simulations, the following effects have been observed: 

(a) The temperature front movement in the fractures slows down. Initially 0 

the fracture front velocity is larger than the porous-medium front 

velocity. As the two fronts separate 0 the heat transfer from the hotter 

fracture water to the porous medium substantially slows down the fracture 

front and slightly speeds up the porous-medium front. The rate of change 

of the front movement depends on the heat capacities of the two flow 

systems. In the cases studied, the heat capacity of the porous medium 

is thirty times 

f w w 
greater than the heat capacity of fractures (~ p c ). Eventually the 

front velocities converge to a single, common value which is determined 

by the total heat capacity of the combined flow system. 

(b) The shape of the spreading temperature front is distorted. Without heat 

transfer between the fractures and the porous mediumu each front will 

develop into a symmetric, normal Gaussian distribution around the 

ature front. With heat transfer, the high fracture temperature increases 

the temperature of the porous medium between the two fronts and results 
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in a higher and longer tail preceeding the porous-medium front. On the 

other hand, the slowing down of the fracture front gives conduction and 

dispersion greater time to spread the fracture front before it reaches a 

given location. The result of these distortions lowers the temperature 

at the front of each flow system. 

(c) The front separations behave differently for the linear flow case and the 

divergent flow case. Initially, the fracture and the porous-medium fronts 

separate for both flow cases. In the linear case, the front separation 

monotonically increases and stabilizes to a constant, terminal value. In 

the radially divergent flow case, the fluid velocities change from high 

values near the injection point to low values away from the source. 

After the initial separation of the fronts and the development of large 

temperature differences between the two flow systems, the spatial gap 

between the fronts closes and the temperature difference declines when 

the velocity difference is too small to sustain the initially developed 

front separations. 

(d) The heat loss in fractures is insensitive to the heat transfer coefficient 

hfm. For the linear flow case, the percentage change of heat content in 

the fractures (from time zero to the beginning of terminal velocity) is 

essentially independent of the value of hfm and the flow velocity. When 

more heat is input into the fractures with higher fracture velocity 

through the inflow boundary, more heat will be transferred to the porous 

medium and will not result in an increase in the percentage of fracture 

heat input remaining in the fracture system. For the radial flow case, 
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the ratio of the percent change of heat content in the fractures to that 

in the porous medium is insensitive to different values of hfm and to 

different times. 

(e) Thermal dispersion damps out the numerical oscillation. The thermal 

dispersion terms, included in the model in the temperature equations, are 

proportional to the intrinsic fluid velocities. In the radial flow case, 

the high velocities specially for the fractures) near the injection 

point greatly increase the dispersion contribution. The dispersion, 

together with the conduction, is responsible for the spreading of the 

front and the damping of numerical oscillations. Numerical oscillation 

(undershoot) in the temperature spatial distributions is noted mainly in 

the porous-medium front at earlier time on the low-temperature side of 

the front away from the point source. At early time, the fracture front 

spreads out quickly. Later in time the fracture front spreads very 

little over its central portion, while the porous-medium front moves 

closer to the fracture front and the two fronts converge. 

(f) The anisotropy of the medium results in different rates of front propaga­

tion along the principal axes of the permeability. The full capacity of 

the numerical code is used to solve the fluid flow equation and the 

temperature equations for an anisotropic case with principal permeability 

ratio of 25:5:1. The qualitative changes in the front movements and 

distortions are similar to those noted in the isotropic case. 
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VI. SUMMARY 

This model is intended for the study of fluid flow and, particularly, the 

temperature fields in a double-porosity model of a fractured rock mass. The 

temperature equations for the fractures and for the porous-medium blocks are 

fm f m fm 
coupled by a heat transfer term ±h (T - T ). The coefficient h is mainly 

determined by the heat conduction from the porous-medium blocks to the frac-

tures. The temperature equations are also coupled to a combined flow equation 

through the viscosity and density variation with temperature in the flow equa-

tion and through velocity-dependent convective and dispersive terms in the 

temperature equations. 

The coupled equations are solved by a three-dimensional finite-element 

code using hermite basis functions for improving continuity of spatial 

gradients. 

The results of modeling a linear flow system and a divergent flow system 

with hot water injection indicate the important effect heat transfer between 

the fractures and the porous medium has upon the changes of the temperature 

front movements and upon the spreading of the fronts. 

The model in its current version is used mainly for the study of tempera-

ture effects due to hot water injection. Extension can be made for applica-

tions to thermally induced fluid flow movement and nonisothermal well testing 

analysis. 
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GWTHERM 

GWTHERM (~round !ater flow with THERMal gradients) is an integrated 

finite~difference program for two-dimensionalu nonisothermal, saturated flow 

in porous medium. The regional flow patterns around a repository in crystal-

line rocks have been studied. The code has been used with another thermal 

stress code. The model, GWTHERM, is described in Runchal and others (1979), 

Runchal and Maini (1980), Dames and Moore (1978) 6 Hardy and Hocking (1978). 

I. GOVERNING EQUATIONS 

In this model there are two coupled equations: one pressure equation and 

one temperature equation. 

pressure equation is 

In terms of the hydraulic head h = P/pwg + z, the 
0 

and the corresponding Darcy velocity is 

S is the 
s 

fie storage coefficient. ~ is the hydraulic conductivity 

"" w kp g/~ at reference temperature T • The viscosity ratio ~ /~ and the density 
0 0 0 0 

ratio p w /p w couple the pressure field with the temperature field. Boussinesq' s 
0 

approximation has been used in the pressure equation. The effects of density 

variation are retained only in the buoyancy term to account for the imbalance 

of w "' tational force -p gz. 
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The temperature equation is written as 

m w 
where CH, CH are the heat capacity per unit volume of the porous medium (rock 

matrix and pore water) and of water, respectively. The quantity within the 

parentheses is the combined convective and conductive flux. The convective 

w= w-
term is usually expressed as CHq0 VT instead of V•cHqT. In finite differencing 

the temperature equation, the convective term first-order treatment. 

Trace Element Equation 

In this model, the Darcy velocity is also used in the calculation of the 

mass concentration of a trace element. The trace-element equation is similar 

to the temperature equation, with retardation of the velocity, diffusion of 

the concentration, and exponential decay of the trace element taken into 

account. 

II. NUMERICAL SOLUTIONS 

Finite Difference 

For the node indexed by i,j for a two-dimensional grid system in x,z- or 

r,z-coordinates, the spatial gradient of the flux of the form dF/ax is approxi-

mated by (Fi+1/ 2 uj - Fi_ 1129 j)/(xi+1/ 2 = 112 >, where the interface points 

i±1/2 are the midpoints between i and i±1. For the thermal conductive flux, 

the term KToT;ax in the temperature equation, the interface value at i+1/2,j 

is approximated by K. I . (T. 
1 

. - T .. )/(x. 
1 

- x. ). The arithmetic mean 
~+1 2 9 ] ~+ v] ~uJ ~+ ~ 

K. 
112 

. = (K 
1 

. + K .. )/2 is used for the interface conductivity as well as 
~+ u] ~+ uJ ~,] 



130 

for other coefficients. The hydraulic term in the pressure equation is simi~ 

larly treated. 
w 

For the convective flux C q T, the interface value is approxi­
H X 

mated by 

T. . 
~+1,] { 

(T. 1 . 
~+ u] 

T .. 
~u]u 

+T .. )/2, 
~,] 

otherwise. 

The two approximations correspond to the central weighting and the upstream 

weighting, respectively. This step change approximation for the treatment of 

the convective term is used to minimize the numerical oscillation associated 

with central weighting for large q and the numerical dispersion associated 
X 

with upstream weighting for small q • 
X 

The final finite-difference equations corresponding to the governing 

differential equations are written in integrated finite-difference form by 

multiplying the equations by the volume element of the block, which is the 

region enclosed by the lines perpendicular to the coordinate axes and passing 

through the points i±1/2,j and i,j±1/2. 

Alternating-Direction-Implicit Scheme 

In this model, the solutions in time use the alternating-direction impli-

cit procedure. In this scheme the time stepping from t to t+~t is obtained 

in two half-steps. In the first half-step from t to t+~t/2, only the x (or r) 

components of the spatial differential operators are advanced in time to t+~t/2 

and the z-components are evaluated at the old time t. By this procedure, the 

unknown nodal value of the variable at i,j is algebraically related only to 

the unknown values at i±1,j. The algebraic difference equations can be solved 
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by the tridiagonal matrix algorithme With the solutions obtained for t+~t/2, 

one can then perform the second half~step from t+~t/2 to t+~t in a similar 

manner, except that the z-components are advanced in time to t+~t instead. 

In this model the same time step is used for the solutions of both the 

pressure equation and the temperature equation. In each half-time step ~t/2 6 

the pressure field is first solved, the Darcy velocity determined, and then 

the temperature (and/or concentration) field is solved. Within one time step, 

there is no iteration between the pressure solution and the temperature solu­

tion to update the viscosity and densitye 

Stream Lines and Particle Tracks 

The Darcy velocity q and the particle velocity v = q/~ are calculated at 

the block boundaries from nodal pressure values. These velocities are for the 

calculation of the stream functions and the particle trackse For steady-state 

flow, the stream lines, i.e., lines of constant stream function, are the fluid 

paths or flow lines. The difference between values of the stream function at 

two points is representative of the volumetric flow between the two points of 

flow. For the evaluation of stream functions, the velocity field is assumed 

to be quasi-steady so that the corresponding stream function can be defined. 

The stream function is calculated by integrating the horizontal component of 

the velocity along the vertical coordinate and the vertical component along 

the horizontal coordinate. 

The particle track calculation is carried out at the end of each full 

time step, using the velocity field averaged over the time step. The velocity 
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at the current particle position is evaluated by linear interpolation from the 

block boundary values. To calculate the new particle position, the full time 

step ~t is divided into five subintervals, with the end points of the subin-

tervals at 0.5~xjv , 0.5~z;v , ~x;v , ~z/v , and ~t. This subdivision allows 
X Z X Z 

that at least two particle positions are calculated inside every grid block 

lying across the particle track. 

III. COMPUTER CODE 

Documentation 

The code was developed by Dames and Moore in FORTRAN IV on the CDC 6600. 

The user's manual with a sample problem is in a company report by Runchal and 

others (1979). Most input data are read in free format. The free format 

structure uses words at the beginning of each input data card to identify the 

property. The numerical value of that property following the key word may be 

in integer, real, or exponential format and may be located quite freely on the 

card. The data are stored in common blocks. 

Spatial Grid 

A two-dimensional, nonuniform grid in either x,z-coordinates or r,z-co-

ordinates is used in this model. The program logic assumes that horizontal x 

(or r) and vertical z values, which may be positive or negative, algebraically 

increase with an increase in the corresponding index values. 

Material 

The material properties can vary in space with different blocks. For the 

fluid flow, the input data are the specific storage S and the components of 
s 
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hydraulic conductivity KF. The porosity $ is also required for the fluid 

particle velocity calculation. For temperature, the data are thermal conduc­

tivity KT and volumetric heat capacities c: and c;. For calculating tracer 

element concentration, the retardation factor, diffusion coefficient, and 

radioactive decay constant are needed. 

Fluid 

The viscosity ratio of water in the pressure equation is calculated by 

~~~0 = exp(B/T- B/T
0

), where Tis in absolute units, T
0 

is a reference temp-

The density of water is P = p [ (T 
0 c 

0/, 

-T)/(T -T)] 
c 0 

where the critical temperature T = 647.3°K and a = 0.2. T and the default 
c 0 

values of B, T , and a can be changed in the input. 
c 

and Sinks 

The heat source strength can be calculated from a decaying power curve 

with up to seven components of exponential functions. Heat and fluid input 

associated with the thermal source can be defined over the grid. 

Initial Conditions 

Pressure, Darcy velocity, temperature, and trace element concentration 

can be specified over the grid at the initial time and at the restarting time. 

Conditions 

Values of pressure, Darcy velocity components, temperature, and trace 

concentration can be specified. 
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Time Steps 

The mass and energy balance can be calculated for each time step. The 

time step is allowed to change in a geometric ratio up to a specified maximum 

value. 

Output 

The paths of one or more groups of particles released from user-specified 

times and positions can be calculated. Several graphic output options are 

available. The time-history printer plots of pressure, velocity, temperature, 

and concentration at ten specified points are generated at run termination. 

Arrays of these solutions, and other material and water properties, can be 

output as printer plot at specified time-step printing intervals. Contour, 

vector, stream function, and particle track plots can be generated by a sup­

plemental program SPLOT. 

IV. VALIDATIONS 

Several numerical solutions have been compared with analytic solutions. 

There has also been one test calculation for hot water storage. A brief list 

of the test cases is given be low. 

Solutions 

(a) Uniform Velocity Field: Velocity is calculated for a linear pressure 

profile. 

(b) Density Variation: The velocity field is calculated for a spatially 

varying fluid density. 
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(c) Linear Temperature Distribution: The temperature distribution between 

two boundaries is calculated for a case with zero net fluid flow across 

the boundaries. 

(d) Temperature Distribution in a Uniform Velocity Field: The temperature 

between two boundaries is calculated for a case with a uniform velocity 

field across the boundariess 

(e) Fluid in Rotation: The temperature distribution in a fluid in a state 

of uniform rotation is calculated within a square excluding the axis of 

rotation. 

(f) Steady Cylindrical Distribution: The temperature distribution between 

two radii is calculated. 

Transient Solutions 

(a) Exponential Hydraulic Conductivity: The velocity field with time~ 

dependent hydraulic conductivity is calculateds 

(b) Concentration Decay: The exponential decay in concentration is 

calculated for a radioactive trace element. 

Hot Water 

Hot~water storage in an aquifer has been modeleds In this simulation 1 

hot water is injected for the first 90 days into a confined aquifer and then 

pumped out at the same rate for another 90 dayss The temperature in the well 

and the tempera·ture in the aquifer after 90 days and 180 days have been com­

pared with the results by Tsang and others (1977). 
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V. APPLICATIONS 

This model has been applied to the calculation of flow around 

a repository in a generic study in granite, basalt, and shale (Dames and Moore 

19781 Runchal and Maini 1980), and in a parametric study in basalt 

(Hardy and Hocking 1978; Hardy and others 1979). These calculations are 

summarized. 

The code has been used in two modes. In the simple mode, only the therm~ 

induced fluid flow field is calculated with this code, and the tempera= 

ture field is calculated separately heat conduction calculations (e.g., the 

use of TRUMP or HEATING, Science Applications, Inc., 1978). The streamlines 

corresponding to the quasi-steady velocities are plotted to represent the flow 

patterns. In the coupled mode, the fluid flow field and the temperature field 

are both calculated. The particle track plots are used to follow the movement 

of water. The regional and long-term thermal effect on the groundwater move­

ment has the following general features. 

(a) The maximum upward flow occurs between 1000 and 5000 years for a 

tory 400 = 600 m deep in the generic studies. The upward flow through 

the repository is largely controlled by the thermal loading and is insen= 

sitive to the 

or 

The flow 

hydraulic gradient, local variations in hydrologic 

conditions. 

at the maximum thermal influence is characterized by a 

convection cell with upward buoyancy flow through the repository 

and downward recirculation flow around the In the presence 
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of a regional hydraulic gradient from recharge zone to discharge zone, 

the convective pattern is more prominent on the discharge side of the 

repository than on the recharge side. The shape of the convective cell 

also depends on the hydraulic conductivities. An overall increase in 

vertical conductivity tends to stretch the thermal convection patterns 

in the vertical direction and leads to stronger vertical flows. 

(c) The presence of a vertical fault through the discharge side of the repos~ 

itory promotes the channeling of the downward recirculation flow. A 

significant increase in the upward velocity is mentioned in the generic 

studies. Because the fault is located on the discharge side, the channel~ 

ing of flow through the fault does not change the flow pattern signifi­

cantly. A fault on the recharge side may lead to significant change in 

the flow pattern. 

(d) Larger horizontal flows, resulting either from larger horizontal hydraulic 

conductivities or a larger regional hydraulic gradient, tend to shrink 

both the convection cells and the influence of thermal buoyancy. A part­

icle entering a very permeable layer, either near surface or at depth, 

will travel horizontally for a long distance. 

Fluid Flow and Thermal Stress 

This thermal flow code has been used in tandem with a thermal stress code 

in the regional repository study in basalt. Some results have been presented 

mainly to demonstrate the capability. The calculation has the following steps: 

(i) changes in the temperature field induce changes in stress; 

(ii) stress opens or closes the aperture of a fracture; 
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(iii) permeability and porosity of the fracture network in the rock are 

related to the deformation of single fractures; and 

(iv) modified values of these hydraulic properties are used in the 

continuation of fluid flow and heat transfer calculations until 

significant change in temperature warrants the return to step (i). 

Some of the features in these calculation steps will be briefly outlined. 

(a) After a number of time steps in the thermal and flow calculations, the 

changes in the temperature field are input to a finite-element 1 nonlinear, 

thermally induced stress program DAMSWEL (Williams and others 1979). 

Linear interpolation is used to interface the finite-difference grid and 

the finite-element mesh (at Gaussian points within the two-dimensional 

eight-noded isoparametric quadrilaterals). 

(b) The experimental data of Iwai (1976) and the normal stress-deformation 

relationship of Goodman (1976) are used to determine the fracture defor-

mation from the thermally induced stress change. The shear dilatations 

are neglected. Iwai has performed normal stress-fracture deformation 

laboratory tests on single induced fractures in granite, basalt, and 

marble. The data are fitted with the nonlinear relationship proposed by 

Goodman: 

AV 
V - AV me 

For the calculation, this relation is used to relate the normal deforma-

tion (closure) of the fracture AV with the normal applied (thermal) stress 

o • v is the maximum possible normal closure; ~ is the seating stress 
N me 

(weight of the upper rock sample in Iwaius experiments) which defines the 
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initial condition for measuring the deformation; and A and t are empirical 

constants determined from the experimental data. The values of A and t 

depend in general on the loading history because the stress~deformation 

behavior of fractures exhibits hysteresis and permanent deformation under 

cyclic loading. 

(c) Permeability and porosity changes are related to single~fracture deforma~ 

tions with the cubic law of fracture flow. The rock formation is assumed 

to contain one vertical and one horizontal fracture set. The porosity 

change is directly related to the fracture aperture deformation. Assum-

ing laminar flow between the parallel plates, the cubic relationship 

between fracture aperture and equivalent continuum permeability is used. 

The dependence of the permeability on normal stress change is given by 

the following formula (Iwai 1976): 

3 

where kN and k~ are the permeabilities at stress crN and cr~· The new 

permeability and porosity are used in the thermal and flow calculations. 

The permeability and porosity changes affect mainly the water movement. 

However, for most cases in regional repository studies, the fluid flow 

changes do not significantly affect the temperature field, and the time 

intervals for interlacing the two codes are determined mainly by heat 

conduction and thermal loading. For near-field studies 6 the interaction 

of the fluid flow and thermal stress is stronger. The pressure field, as 

well as the temperature field, will deform the fractures. 
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VIe SUMMARY 

This code is for modeling thermally induced flow and heat transfer in 

porous media. The density buoyancy and the temperature variation of viscosity 

are taken into account, and the storage coefficients of the pressure equation 

are specified. The numerical solutions on two-dimensional x,z or y,z grids 

are obtained by the alternating-direction implicit procedures. 

The results of modeling thermally induced flow patterns demonstrate the 

long-term regional impact of buoyancy flow in a repository. The streamline 

plots and particle track plots are informative. 

The procedure for using this code together with the thermal-stress code 

is of interest. The inelastic deformation of fractures are important to fluid 

flow movement. 
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FINI 

FINI 520 is a finite~element program for two-dimensional, nonisothermal, 

saturated flow in porous media. FINI 500 is the isothermal flow version. 

The model has been used in fluid flow studies for different time periods for 

in granite. The stress permeability changes have been calculated 

with another finite-element code. The model FINI is described in Burgess 

(1977) and Ratigan and others (1977). 

I. GOVERNING EQUATIONS 

The FINI 520 model has one quasi-steady pressure equation and one tran­

sient temperature equation. In terms of the hydraulic head h = P/pwg + z, the 

pressure equation is 

In FINI 500, a transient term is also included. The Darcy velocity is given 

by 

and the pore velocity is given by v q/~. The temperature Tin the buoyancy 

hydraulic conductivity at reference temperature T • 
0 

d . w w w w( ) h b d water ens~ty p = p
0 

~ p
0

ST T - T
0 

as een use • 

The equation of state of 

Boussinesq's approxima-

tion is assmned. The effects of density variation are retained only in the 

imbalance of the gravitational buoyancy force. 



142 

The temperature equation is written as 

pm and em are the bulk density and specific heat of the fluid-filled medium, 

and pw and cw correspond to the fluid. The volumetric heat source also in­

cludes PwcwqFTb for a fluid source at temperature Tb. 

The reference temperature T corresponds to the nonbuoyant condition. 
0 

For the cases with substantial throughflow, T is fixed at the inflow supply 
0 

temperature. For natural convection problems without inflow, T is calculated 
0 

in this model as the average temperature in the modeled region. 

II. NUMERICAL SOLUTIONS 

Finite-Element Method 

The model solves the governing equation by the finite-element Galerkin 

method. Six-node, planar or axisymmetric, quadratic, isoparametric triangles 

are used to divide the two-dimensional horizontal-vertical plane. The corres-

ponding three-node flux and external film loading lines are used on the boun-

dary. In the isothermal version, FINI 500, six-node quadratic gap (fracture) 

elements are also included. Each node has two variable values: the pressure 

head and the temperature. A variable within an element is interpolated in 

terms of the nodal values by the quadratic basis functions. 

The matrix equations relating the nodal values over the modeled domain 

are obtained by applying calculus of variations to the Galerkin functional. 

The functional is constructed by integrating the residue of the interpolated 
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trial solution over the element weighted by the basis functions. For the tri-

angles, seven numerical integration points are used. The flow velocities are 

calculated on four of these points inside the element. For the lines on the 

boundary, three integration points are used. 

t Treatment and Solution Scheme 

In most finite-element models, first-order finite difference is used to 

approximate the time derivative to relate the nodal values at t to those at 

t+~t. The values associated with its spatial gradiant terms can be calculated 

explicitly at t with A. = 0, implicitly at t+~t with A = 1, or weighted between 

with 0 < A < 1, where A. is the implicit. interpolation factor. In this model, 

instead of the finite-difference method, the Galerkin finite-element procedure 

with a linear basis function from t to t+~t is used for the time derivative. 

The derived matrix equations are similar to the usual implicit equations with 

an equivalent A ~ 2/3. The 2/3 implicit weighting is applied to the second-

order hydraulic term and thermal conductive term and to the volumetric sources. 

However, the first-order buoyancy term ~;T in the pressure equation and the 

convective term v•VT in the temperature equation are treated explicitly. 

b In this model, the boundary flux can be of the form a (h - h ) and 
p 

a (T -T - ) , where a's are the film transfer coefficients, and hb and Tb are 

the ambient boundary head and ·temperature outside the film. If a is a fixed 

constant, the corresponding film transfer is treated 2/3 implicitly. If a 

is a variable, the film transfer is treated explicitly. The film transfer 
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boundary condition is used in the study of inflow into a repository with back 

pressure maintained within the repository. 

For steady-state runs, an iterative process is used to obtain the solu­

tion. The buoyancy term and the convective term lag one iteration behind the 

conductive terms and the source and boundary flux terms. 

The matrix equation is solved by a triangular symmetric decomposition 

subroutine, followed by forward and backward substitution. 

III. CO~~UTER CODES 

Documentation 

The codes FINI 500, 520 were developed by Acres Consulting Services Lim­

ited and were initially installed on the GE415 computer. The user's manuals 

and sample problems appear in company reports (Skiba 1977; Skiba and others 

1977). The program is divided into overlay segments to minimize storage re­

quirements. Disc storage of data is used to pass from overlay to overlay. 

Grid 

For each node, the code reads in vertical and horizontal coordinates 

and the assigned nodal number. Each element is assigned an element type, a 

material type, and the corner nodal numbers. The element can be planar or 

axisymmetric 6-node triangles, 3-node lines, or, in FINI 500, 6-node gaps. 

The principal axes of hydraulic conductivity and thermal conductivity can be 

oriented away from the coordinate directions by specifying the angle between 

the vertical mesh axis and the conductivity axes. 
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Material 

The two principal values of hydraulic conductivity, the porosity, the 

two principal values of thermal conductivity, the bulk density, and the bulk 

specific heat are input for each material type. 

Fluid Properties 

Fluid density, fluid specific heatu and the coefficient of thermal expan­

sion are read in together with the material properties. Viscosity is calcula­

ted according to the relation used by Mercer and others (1975): 

~ - (5380 + 3800A - 260A
3

) kg/m/sec, 

where A (T - 150)/100, ooc ' T < 300°C. 

Initial Conditions 

The pressure head and temperature can be specified at nodes either at the 

initial time or at restarting times. Disc storage is usually used between 

stop and restart. 

Source and Conditions 

For both pressure head and temperature field, the specified nodal values, 

nodal source, element area source rate, line normal flux, line film transfer 

coefficients, and ambient value outside the film can be specified. All the 

values and sources can independently vary linearly over time spans of one to 

several time steps. 
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Time Steps 

For each time span in the analysis, the number and size of time steps 

are specified. Since the pressure head equation is quasi~steady, there is 

only one time step, that for the temperature transient. 

Output 

Pore velocities are computed and written to disc for each time step in 

the time span. Meshes, isotherms, equipotentials of pressure head 1 and pore 

velocities are plotted with a follow-up program FINI 511, using the data on 

the disc files produced by the main code. 

IV. VALIDATIONS 

(a) Temperature Front Movement: The linear temperature front movement in a 

constant flow field is calculated to test the convective-dispersive 

temperature equations. 

(n) steady Potential with Sinusoidal Potential Boundary: A two-dimensional 

distribution of potential is calculated to test the steady-state pressure 

equation. 

V. APPLICATIONS 

The codes have been used in the study of groundwater movements around a 

repository in the Precambrian bedrock of Sweden for the Swedish Nuclear Fuel 

Safety Project (Karnbranslesakerhet or KBS). The results of calculations with 

these fluid flow codes and with other stress codes (RSI of RE/SPEC) are in the 

KBS technical reports 54:1-6 (Stille and others 1977; Ratigan 1977a,b; Burgess 

1977; Ratigan and others 1977; Lindblom and others 1977; see also Burgess and 
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others 1979). Currently, this code is being used in the Atomic Energy of 

Canada 0 Limited (AECL) project for a granite repository. Some of the results 

from the KBS studies are qualitatively summarized. 

Initial Groundwater Flow 

(a) The effect of an inclined high-conductivity gap embedded in a regional 

flow field has been modeled. If the gap exits near the seashore 0 

regional flow from the inland mountain recharge areas to the coastal 

discharge areas will be channeled by the gap and result in high discharge 

velocity. If the gap dips in the other way, the flow is attracted to 

greater depth. 

(b) If the hydraulic conductivity decreases with depth, a quiescent zone with 

slow groundwater flow is developed at depth. This feature is more evident 

when the horizontal conductivity is greater than the vertical conductivity. 

The empirical conductivity depth relationship used in some cases is 

2 3 
log KF(m/sec) = -5.57 + 0.362(log D) - 0.978(log D) + 0.167(log D) , 

where D is the depth in meterse 

Excavation and Thermal Effects 

(a) The excavation of tunnels for a repository results in an increased 

compressive stress which is tangential to the tunnel wall and which in 

turn closes the fractures and decreases the hydraulic conductivity 

normal to the wall. The normal stresses are zero at the tunnel peri-

phery and steeply increase to in-situ values over short distance into the 

rock, resulting in high tangential conductivity near the tunnel. The 
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conductivity-normal stress relationship used in the calculations is the 

same as the conductivity-depth relationship (above) with log D substi-

tuted by log o . .,/0 , where 0 is the overburden stress from 1 m of rock. 
•• 0 0 

(b) After emplacement of the waste, the perturbations due to thermal stresses 

and viscosity changes on hydraulic conductivity are less significant than 

the perturbations due to construction of the repository. Inflows to the 

repository, with or without the development of back pressure in the repos-

itory, have been modeled. 

(c) In the absence of regional groundwater flow, the waste heat induces 

convection cells around the repository. With regional cross flow, the 

cells are suppressed and become minor perturbations to the natural flow 

patterns. 

Long-Term Effects After Thermal Impact 

(a) The flow patterns around a repository have been modeled for a zone with a 

local groundwater table peak above the repository and bounded by vertical 

boundaries representing major fault zones. The flow is generally down-

ward from the surface to the repository and laterally toward the vertical 

boundaries. For the case where horizontal hydraulic conductivity de-

creases with depth and with small vertical conductivity, the local ground-

water table variation has little effect on the flow patterns at depth. 

(b) If the repository rooms are left void or loosely backfilled with original 

material, the flux and pore velocities in the repository area differ 

considerably from the natural conditions before the repository existed. 

The travel times from the repository to the vertical boundaries have been 

calculated for different cases. 
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VI. SUMMARY 

This code is designed for modeling thermally induced flow in porous media. 

The time-dependent temperature equation is combined with the quasi-steady 

pressure equation to account for the density-buoyancy effect. The numerical 

solutions on vertical=horizontal planar or axisymmetric grids are obtained by 

the finite-element method. 

The results of modeling steady flow patterns before and after the thermal 

impact of a repository, and the results of thermally induced flow patterns, 

are of interest. The effects of permeability-depth dependence, regional 

groundwater flow, stress-permeability perturbations, and the presence of fault 

gaps have been studied for a hypothetical repository in granite. 
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CFEST-FE3DGW 

The model FE3DGW (Finite Element 3-Dimensional Ground-Water) is for iso-

thermal, saturated flow in multilayered porous media. The model has been used 

in simulations of regional groundwater basins and in repository generic 

studies. CFEST (Coupled Flow, ~ergy, and Solute !ransport) is an extension 

of FE3DGW to include heat and solute transport. FE3DGW is described in Gupta 

and others (1979) and Cole and Gupta (1979). The early versions of FE3DGW are 

described in Gupta and others (1975) and Gupta and Tanji (1976, 1977). CFEST 

is described in Gupta and others (1980). 

I. GOVERNING EQUATIONS 

In the FE3DGW model, the governing equation is 

(lnkwh + ,1P) ah = V•K "Vh- q' 
"''"' '"'h at F p• 

The variable is the hydraulic head 

p 

h ~J dP 
+ z. 

iJW(P)g 
p 

0 

The Darcy velocity is 

The responses of fluid density pw and porosity~ to head changes are assumed to 

be elastic, with constant compressibilities l:l~ and S~u respectively. KF is the 

the hydraulic conductivity, and q~ is the strength of the withdrawal rate. The 

hydraulic heat h is also used as the variable of the fluid flow equation in 

CFEST. 
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In CFEST 1 the fluid flow equation is derived from the conservation of 

total fluid mass: 

The transfer of energy by conduction and convection is given by 

Solute transport by diffusion (dispersion) and convection is given by 

Q~ (= -QF) is the fluid mass sink/source and Q~ is the rate of heat loss. The 

b b 
injection of fluid at temperature T and concentration C are includede 

The final forms of the equations are derived by substituting the follow-

ing relations: 

= ~ [ 1 + J)p (h --h ) ] u 
0 h p p 

0 

w U(T) = U + c (T- T ) 9 0 0 

w 
- P ]C v 

0 

w·here hp is the pressure head component of h and s: is the pressure head com­

pressibility. The thermal expansivity s; and the specific heat cw character­

ize the linear responses of the fluid density Pw and the internal energy U to 

the temperature change. The change of Pw is also proportional to the concen-

tration c. With the substitution of these relationships, the fluid flow, 

energy transfer, and solute transport equations are expressed in terms of the 

head h, temperature T, and concentration (mass fraction of solute) c. 
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II. NUMERICAL SOLUTIONS 

Finite-Element Method 

The models reduce the governing partial differential equations to systems 

of algebraic equations through the use of the Galerkin finite-element method. 

The three-dimensional space is decomposed into finite-element domains with 

eight corners. FE3DGW uses mixed order isoparametric elements. The corner 

nodes can be joined either by straight lines with linear basis functions or by 

curved lines with quadratic or cubic basis functions. In CFEST, only linear 

elements are used. A variable within an element is interpolated in terms of 

the values of the variable at the nodes on the element boundary. The trial 

solution is substituted into the differential equations. The space-differen­

tial operators operate on the basis functions used for interpolation. The 

residue of the trial solution is integrated over the element weighted by the 

basis functions. The integration is carried out using 2, 3, or 5 Gaussian 

integration points in each dimension. 

t Time Difference 

First-order finite difference is adapted to approximate the time deriva­

tive. The backward-differencing implicit scheme is used to construct the im­

plicit matrix equation relating the unknown nodal values at t+~t to those at t. 

The intermediate results of the products involving basis functions at Gaussian 

points are computed and stored on disc until the coefficient matrix is altered 

due to a change in time step or hydraulic properties. 
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Iterative Scheme 

In CFEST, the three equations are solved in a cyclic-uncoupled solution 

scheme in which the dependent variables (head hu temperature T, concentration 

C) are treated as unknowns only when their respective equations (fluid flow, 

energy transfer, solute transport) are being solvede Thus when the fluid flow 

equation is solved for head, the temperature and concentration are assumed 

known from the most current estimates of these variables in the evaluation of 

nonlinear coefficients and loading functions. The energy transfer and solute 

transport equations are treated similarly. The cyclic sequence of the solu­

tion proceeds from fluid flow to energy and finally to solute transport. If 

successive iterations of this cycle fail to yield compatible results, the 

cycle is repeated. 

Matrix Solver 

The solution of the matrix equation uses an in-core, compressed-matrix 

solver (Gupta and Tanji 1977). The nonzero coefficients are stored in one 

array and their corresponding column indices in another array. First the 

code locates the element with the largest absolute magnitude in the row con­

taining a minimum number of nonzero elements. Then the elements in this row 

are normalized with this element. The row is used to eliminate the elements 

in remaining rows. The elimination loop proceeds until an upper-triangular 

system is obtained. The triangular equation is solved by the backward substi­

tution procedure. 
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III. COMPUTER CODE 

Documentation 

FE3DGW is written in FORTRAN IV and was initially developed on Burroughs 

B6700 at the University of California, Davis. The code also has been run on 

CDC 7600 at Lawrence Berkeley Laboratory and at Rockwell. The current devel­

opment of FE3DGW and CFEST is mainly using the PDP 11/45 at Battelle Pacific 

Northwest Laboratory for the Assessment of Effectivness of Geologic Isolation 

Systems Program. The user's manual and code listing of FE3DGW are in the 

reports by Gupta and others (1975, 1980). The following subsections are lim­

ited to FE3DGW. The documentation of CFEST is underway. 

Spatial Grid 

The grid design for a multilayer system proceeds in two steps: subdivi­

sion of the surface region, and well-log descriptions at each surface node. 

The surface of the modeled region is divided into two-dimensional mixed-order 

elements with linear, quadratic, or cubic order sides. Major features on 

underground hydrogeologic units, together with surface-water boundaries and 

well locations, are identified by discrete nodes on the surface. For each 

surface node, the vertical log detail for the layers is provided by the user. 

For the well nodes, the well data itself can be used. For other nodes, inter­

polation from contour maps of thickness or elevation of each formation can be 

used to provide the information. With the log description, the code generates 

the three-dimensional grid within the program. 
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Material 

The principal directions of hydraulic conductivity are assumed to be 

oriented parallel to the x,y, and z coordinates. For each material, the 

values of hydraulic conductivities can be (i) read-in constants; (ii) calcu-

lated with kpwg/~ using read-in density and viscosity from temperature-

depth relationships for salt-free water; or (iii) estimated from read-in salt 

concentration at all the nodes. The hydraulic conductivities can change from 

element to element. Other properties for each material are the porosity, the 

reference pressure at which the porosity is measured, and the compressibility 

of the porous medium. 

Fluid Properties 

The compressibility of fluid is read in together with the material 

properties. 

sources and Sinks 

Nodal and/or element sources and sinks can be specified. 

al Conditions 

The head values for all the nodes can be specified at the initial time or 

at restarting time. 

Conditions 

Prescribed head (water level) and prescribed flux (vertical infiltration) 

boundaries can be specified. 

Time S 

The number and the size of time steps are by the user. 
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The grid values, contour maps, and three-dimensional plots of input data 

and calculated results can be generated with supporting programs. PLOTEL plots 

the location of each node, two-dimensional surface elements, and the vertical 

log at each location. GRIDIT, GRIDIN, or GRIDH are used to produce contour 

and three-dimensional plotting of top elevation, thickness, and head of each 

material after the finite-element grid values are interpolated to regular grid 

locations. Interactive graphic terminals can be used. 

IV. VALIDATIONS 

FE3DGW: 

(a) Continuous Line Source: The Theis solution (1935) for radial flow to a 

well pumping at a constant rate in an infini anisotropic aquifer. 

(b) Potential Distribution: Regional potential distribution in an aquifer 

system having an initial uniform gradient, large remote radial boundary, 

and cavernous cylindrical reservoirs. 

(c) Drawdown Distribution: Drawdown in the vicinity of a steady well drain-

ing an elastic strata. 

C:fEST: 

(a) Temperature Front Movement: The linear temperature front movement in a 

constant flow field is calculated to test the convective-dispersive 

equation. 

(b) Flux Boundary Problem. 

(c) Radial Transport Solution. 
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V. APPLICATIONS 

The model has been used in the simulation of multiaquifer systems at 

Sutter Basin, California, and Long Island, New York. The code is currently 

being used in simulations for waste repositories in salt and in hard rock. 

(a) Sutter Basin: A vertical fault zone in the basin is the channel through 

which the connate water rises from depth. The heads are higher near the 

fault zone at the bottom of a near-surface nonmarine deposit. 

(b) Long Island: A three-dimensional, wedge-shaped model was constructed 

for the ground-water system with complex stratification. The model was 

used to evaluate alternative schemes for water supply and waste-water 

treatment. Historical data were used for steady-state and transient 

validations. 

(c) Salt Repository: A hypothetical repository is assumed to be located 

600 m deep in a generic salt formation below a nonprolific aquifer. The 

vertical ground-water potentials were calculated to examine the conse­

quences of the accidental release of radionuclides from the repository 

to a river on the ground surface 5 km from the center of the repository. 

(d) Hard Rock Repository: The flow paths and travel times to the surface 

lakes and rivers from a reference repository in granite were determined. 

In the simulation of flow through the fractures, the major fracture zones 

are represented by discrete elements with two additional thin elements to 

provide a transition zone from fractures to rock matrix. 

(e) Hard Rock Mine: The pumping requirements and the zone of influence of 

drawdown were studied for a mine in a Precambrian crystalline rock site. 
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VI. SUMMARY 

FE3DGW was developed for modeling large ground-water basins. It is being 

extended, in the new CFEST, to model the hydraulic head, temperature, and con­

centration. 

The numerical solutions in three-dimensional space were obtained by the 

Galerkin finite-element method with mixed-order basis functions. The mesh is 

generated using subdivision of the surface region and the well-log descriptions 

at surface nodes. Graphic output capability and interactive modeling applica­

tions are emphasized in the recent development. 

FE3DGW has been used in the simulations of two large ground-water basin 

studies. Detailed documentation of the recent applications in generic and 

site-specific repository studies will be of interest. 
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SWIFT 

SWIFT (Sandia Waste Isolation Flow and !ransport) is a finite-difference 

program for three~dimensional fluid flow, heat, and inert solute transfer in 

saturated porous medium. The model has been used in radioactive waste trans~ 

port calculations for salt and other formations. Different versions of the 

model are described in Dillon and others (1978), u. s. Department of Energy 

(1979), and in the report of the program SWIP (U. s. Geological Survey 1976). 

I. GOVERNING EQUATIONS 

In this model there are three coupled equations: one pressure equation, 

one temperature equation, and one concentration equation. The set of govern~ 

ing equations is formally written in the form of conservation equations. The 

continuity equation for the fluid flow is: 

The energy balance between the change of internal energy U and the net flux of 

enthalpy H is described by: 

a w r r 
0 

t [ <PP U + ( 1 ~ cp) p c T] = 

The material balance equation for a solute (e.g., salt) is: 
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The material equation is needed for cases in which additional fluid movement is 

induced by the density difference between concentrated salt water and fresh 

water. The explicit gradient expression of the Darcy velocity, 

q = D = depth, 

has been used for the flux terms in all three governing equations. The Q1 

F 

(= 9QF) in the equations is the fluid mass withdrawal rate. In the tempera-

ture equation 8 Q~ is the heat withdrawal rate and Q~ is the heat loss to sur-

rounding strata. 

The governing equations can be explicitly expressed in terms of pressure 

P, temperature T8 and concentration C by relating the density Pwe porosity ~~ 

internal energy u, and enthalpy H to these variables. With the initial pres-

sure and temperature at some point in the aquifer as the reference conditions: 

p p [1 + s; O? - p ) - 8W (T - T ) ] + ace, 
0 0 T 0 

u u + cw(T - T 0)' 0 

w 
) . H H + c (T - T 

0 0 

In this code, a modeled domain is characterized by a constant compressi-

bility of pores ~ for response of the porosity to pressure change, and by 

a constant compressibility s;, a constant thermal expansivity s;, and a 

constant a = (dP/dc) 
0 

for the responses of fluid density to pressure, 
c c= 
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temperature, and concentration changes. The fluid energies are linear func~ 

tions of temperature. w 
c in the equations for u and H is the heat capacity of 

water. 

Dispersion 

In addition to the thermal conductivity KT and molecular diffusivity Kc' 

the energy equation and the solute equation also include the hydrodynamic 

dispersivities KTD and KCD' respectively, in the diffusion terms. The hydro­

dynamic dispersion is described as a linear function of fluid velocity. In 

terms of either the longitudinal dispersivity a~ or the transverse dispersiv-

ity at, the hydrodynamic dispersivities can be expressed as 

where v is fluid particle velocity v = q/~ and c: is the heat capacity per 

unit volume of fluid. When a~ *at, the temperature (or concentration) gra­

dient in one direction will induce dispersive flux in another direction and 

cross-derivative terms (such as o(K 3TjOy)/dx) will appear in the energy and xy 

solute equations. The use of the same dispersivi ty a in the energy and solute 

equation expresses the concept that the microscopic heterogeneity in convec~ 

tive flow creates the same dispersive effect in temperature as it does in a 

material concentration. It should be noted that the product ~a has often been 

used by other models for the term "dispersivi ty." 
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Radioactive Trace Element Transport 

After solving the coupled equations describing the fluid flow, energy 1 

and an inert solute transfer, the flow solution is then used to solve radio-

active/trace component equations at the end of each time step. The equation 

for a radioactive component is similar to the concentration equation of the 

inert solute with additional sink/source terms for the radioactive decay and 

generation from other nuclides. The equation of a parent nuclide is solved 

before those of its daughters. A decay chain with a parent decay into several 

daughters can be treated by specifying the branching fractions. 

II. NUMERICAL SOLUTIONS 

The governing equations are solved by a finite-difference method for a 

grid in three-dimensional x 1 y,z-coordinates or in two-dimensional r,z-coordi-

nates. For the node i,j 1 k for the x,y,z grid, the finite-difference appro-

W"" ximation for the X differential term of v•(p k/~)·VP is of the form 

U. 1/2 ' k (P '+1 ' k - p' ' k) - U' 1/2 ' k (P' ' k - p' 1 ' k) • 1+ u]u 1 u]u 1u]u 1- t]u 1u]u 1- u]u 

The interface transmissibility (conductance) at the interface i+1/2,j 8 k 1 mid-

way between i,j,k and i+1,j,k, is evaluated as 

2!J,y ,/J.Zk ( W) 
(Al!. ) + (Al!.) ~ '+1/2 . k k k 1 u]u 

X i X i+1 

w with harmonic mean fork and arithmetic mean for p /~· The block lengths 
X 

are !J.Yj = yj+1/ 2 - yj_ 112 , and !J.Z and !J.X are similarly defined. 
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In finite differencing, the differenial equation has been multiplied by 

the volume of the nodal block bX.~y.~zk to express it in the integrated finite~ 
l. J 

difference form. If the principal axes of the permeability are oriented along 

the coordinate system, the finite-difference approximation of V•(p~/~)·VP is 

the sum of the x, y, and z differences. Other conductive terms V•KT "VT and 

v·p~c·vc in the energy and solute equations can be similarly approximated. 

= w= 
For the dispersive terms V.KT0 •VT and V"p Kcn•VC with anisotropic dispersiv-

ities, additional difference terms for the cross-derivatives will be included. 

If a simulation is performed in a two-dimensional r,z grid, the term 

2b.y.~zk/(~. + 6x. 
1

) in the difference equation becomes 2'lf~zk/JI,n(r. 1;r. ). 
J l. l.+ l.+ l. 

The first-order convective terms V.pwHq and V.pwCq in the energy and 

solute equations can be approximated either with central weighting or with 

upstream weighting. The central weighting (central difference in space) has 

no second-order space-truncation error. However, the solution may oscillate 

artificially if block sizes exceed certain limitations. On the other hand, 

the upstream weighting (backward difference in space) introduces a space-

truncation error which is virtually identical to the physical diffusion. To 

limit the numerical oscillation or numerical diffusion, the grid size is lim-

ited in either weighting method. The instability consideration and numerical 

diffusivity also depend on the choice of schemes for finite differencing in 

time (Lantz 1971). 
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Semi-Implicit Time Difference 

First-order finite difference in time is used. A time derivative ax/at 

is approximated by ox/at with ox = xt+~t - It is noted from this defini-

1 ox:z + x2ox,· 
xt+~t t 

w w 
With this rule, a(~p )/atu a(~p U)/at 

and 3($PwC)/at of the governing equations can be approximated. w 
The 6$u op u 

OU can further be expressed in terms of oP, oT, and oC: 

w 
and oU = c oT. 

Then the system of three difference equations is algebraically reduced to a 

triangular system with only OP appearing in one equation, oP, oT in the next, 

and all of oP, OT, oc on the third equation (Gaussian elimination). This 

allows the sequential solution of oP 1 oT, and oC within an outer iteration 

(Coats and others 1974). 

The dependent variables, P 8 T, and C, appearing in the space derivatives 

can be the values at the new time t+~t (backward-differencing implicit scheme) 

or be the averages of the values at the new time and the values at the old 

time t (central-differencing Crank-Nicholson scheme). In this model, the 

pressure equation is treated implicitly 1 but the temperature equation and the 

concentration equation can be solved by either scheme. Within one time step, 

oP, oT, and oC are solved iteratively. One iteration consists of solving oP, 

updating the p w and <j>; solving oT, updating p w; and solving oC u updating p w. 

The iteration stops when the convergence criteria are satisfied. A tolerance 

w w w 
of 0.001 is used on the maximum fractional change in density (~pT + ~pc)/p 0 
over the grid block in one iteration. The temperature or concentration 
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calculation can be bypassed if the corresponding fractional change in density 

is less than 0.0005. 

W= W '"' The interface transmissibilities corresponding to the terms p k/~, P Hk/~, 

(KT + K,rD), and pw(Kc + KCD) are treated explicitly; i.e., the values of these 

these coefficients at old time t are used in solving P, T, C of the new time 

t+~t. 
w 

At the end of the iteration, enthalpy H is calculated by Ht+~t + c ~T, 

viscosity is calculated with the new temperature and concentration, and the 

new flow velocity field is determined. During the iterations, cross-deriva-

tive terms originating from the anisotropic dispersive heat and solute fluxes 

(off-diagonal terms) can be treated either by lagging one iteration behind the 

diagonal terms or by approximating the cross terms by adding the off-diagonal 

dispersivities to the diagonal component along the x,y,z-coordinate axis. 

Solution Schemes 

Within one iteration, the solution of implicit equations for Op or OT or 

6C is obtained either by the reduced-band-width, direct-solution method ADGAUSS 

(Price and Coats 1974) or by the two-line successive-overrelaxation iterative 

method L2SOR. ADGAUSS uses an alternating diagonal ordering scheme for the 

nodal numbering to reduce the storage requirement and computing time in the 

direct Gaussian elimination procedure. For the example of the two-dimensional 

grid (i,j), the ordering is (1,1), (1,3), (2,2), (3,1), ••• , (1,2), (2,1), ••• 

This ordering scheme partitions the matrix into upper and lower halves, with 

the upper half in upper triangular form. The elimination proceeds half a 

matrix at a time. For small problems, ADGAUSS may be more efficient than 



166 

iterative methods. For large problems, iterative methods with smaller storage 

requirements are recommended. The L2SOR is a block iterative method. The 

block matrix to be inverted each iteration has five diagonals. The accelera­

tion factor for the overrelaxation is determined by the spectral radius of 

the matrix, which is estimated by the successive-overrelaxation iterative 

technique. 

III. COMPUTER CODES 

Documentation 

The code was developed by Intera Environmental Consultants, Inc. The 

user 1 s manual for the model version developed for the u. s. Nuclear Regulatory 

Commission is in Dillon and others (1978). The code is available from National 

Technical Information Service (NTIS) and has been adapted to a number of com­

puter systems at Sandia, Rockwell, u. s. Geological Survey, Lawrence Livermore 

Laboratory, and others. 

Spatial Grid 

The partition of space can be either a three-dimensional, rectangular, 

nonuniform grid in x 1 y,z-coordinates, or a two-dimensional grid in r,z-coordi­

nates. For the x,y,z grid, dip angles in x- and y-directions can be specified. 

For the r,z grid, the blocks can be divided on an equal~ log r basis or each 

block center can be specified. The ~z can be nonuniform. 
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Material 

The hydraulic conductivities, the porosity, and the rock heat capacity 

can vary spatially in different regions of grid blocks. Other required input 

data are the thermal conductivities K along x,y,z-directions, the molecular 
T 

r 
diffusivity Kc' the dispersivities at,at, the rock density P , and pore com~ 

pressibility S~. The x,y,z-transmissibilities, as well as the depth and 

thickness of the blocks, can also be modified independently within a region. 

If trace element concentration calculations are performed, the half-life, the 

adsorption coefficient for each rock type, the daughter-parent relationship, 

and the branching fractions for each component are required data (from cards 

or disk). 

Fluid 

For injection of waste fluid into natural aquifers 8 both the density of 

fresh fluid (C = 0) and the density of contaminated fluid (C = 1) at the same 

reference temperature and pressure are required input parameters. Other par-

ameters are the compressibility P;, the thermal expansitivity s;, and the heat 

capacity cw. The water density is calculated as a linear function of pressure, 

temperature, and concentration. At least one value of viscosity is required 

at C ~ 0 and one at C = 1e One should enter as much data (in tables) as is 

available for viscosity versus temperature and/or concentration. The basic 

viscosity dependence on temperature and concentration is 

~ = ~ (C) exp[B(C)(1/T ~ 1/T )]. 
0 0 

If only one viscosity point is available, the program obtains the values at 

other temperatures according to the generalized chart of Lewis and Squire. 
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Sources and Sinks 

A wellbore model can be used with the reservoir model if the surface 

conditions instead of the bottom-hole conditions at aquifer formation layers 

are specified. The wellbore model solves iteratively a steady-state energy 

balance equation, with heat loss to formations surrounding the wellbore taken 

into account. The pressure and temperature differences between the wellbore 

and the grid block center are calculated with steady radial flow equations. 

The specified discharge rate of fluid, heat 8 and contaminant can be allocated 

between different aquifer layers either on the basis of mobility k/~ alone or 

with mobility and specified or calculated pressure drop between the wellbore 

and the grid block. The rate can be expressed explicitly or semi-implicitly 

with (dq/dP)oP added to the explicit flow rate. 

Initial Conditions 

The reference pressure, temperature, and concentrations in the aquifer, 

and the natural flow velocity along the x-direction, can be specified at t = 0. 

The problem restarts by reading intermediate results and data from tapes or 

disk. The table of initial temperature versus depth can be input. 

Conditions 

The heat loss to layers of overburden and underburden can be calculated 

by specifying the thickness, thermal conductivity, and heat capacity of the 

layers. The aquifer outer boundary can be maintained at constant pressure, 

temperature, and concentration. The influx can be steady or time-dependent. 

The time-dependent flux can be determined by the pressure change in the peri­

pheral blocks, or it can be calculated with the dimensionless pressure-time 
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curves for treating the finite model region surrounded by an aquifer of infi~ 

nite or finite extent (Carter and Tracy 1960; Van Everdingen and Hurst 1949). 

Time Steps 

The size of the time step can be controlled by specifying the desired 

maximum changes in pressure, temperature, and concentration. The number of 

time steps and the number of iterations per time step can be specified. 

Material and heat balances are calculated. 

Output 

The cumulative production/injection in the aquifer and in the wellbores, 

the heat loss, and the fluxes across the boundaries can be output at specified 

time-step printing intervals. Contour maps of pressure, temperature, and con~ 

centration on the x,y- or r,z-plane can be output on the printer. The calcu­

lated values and the measured data of pressure, temperature, and concentration 

in each layer in a well or on the surface can be plotted as a function of time. 

The Darcy velocity and other material and fluid properties can be output at a 

given time. 

IV. VALIDATIONS 

Since SWIFT was developed from SWIP, the comparison of numerical results 

with analytic solutions for SWIP will be briefly summarized below. Other 

tests for the wellbore model, heat loss calculation, aquifer time-dependent 

boundary condition, and fluid property calculation can be found in the SWIP 

report (U.s. Geological Survey 1976), and the test for radioactive trace 
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component transport can be found in the SWIFT 

The documented tests for the aquifer model are: 

(Dillon and others 1978). 

(a) Continuous Point Source: The Theis problem with production and shut~in 

is solved either with 16 nodes in radial coordinates or with 11 x 11 or 

13 x 13 nodes in rectangular coordinates. 

(b) Temperature (concentration) Front Movement: Both linear and radial front 

movement in a given flow field are calculated to test the convective dis~ 

persive equation. 

(c) Salt water Intrusion: The linear concentration profiles are calculated 

for comparison with the steady-state profile. 

V. APPLICATIONS 

The model was developed by Intera for Sandia Laboratories supported by the 

u.s. Nuclear Regulatory Commission (NRC). A different version of the model was 

used in the Draft Environmental Impact Statement (U.s. Department of Energy 

1979) for the Waste Isolation Pilot Plant (WIPP) in bedded salt. The code is 

being used for work with the Atomic Energy of Canada on a granite repository; 

with Elsam Arbejde, Denmark, on a salt dome repository; with the Institute fur 

Tieflagerung, GSF, West Germany, on ASSE mine waste disposal; with the Tech­

nical University of Berlin for Gorleben salt dome siteu and with Rockwell for 

Basalt Waste Isolation Plant (S. B. Pahwa, personal communication 1980). 

WIPP 

The modeling for WIPP is mainly the analysis of different scenarios for 

radionuclide transport through hydraulic communication between the repositories 
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(700 m and 900 m deep) and near~surface aquifers and/or a deep aquifer. The 

deep aquifer has greater hydraulic potential and provides a driving force for 

upward flow into the shallow aquifers. The temperature rise in the two 

fers is small (Pahwa and Wayland 1978). 

Conduction and Convection 

A hypothetical repository in salt, sandwiched between sandstone formations 

above and below, has been simulated with or without regional groundwater flow. 

The groundwater flow lowers the temperature in the repository, distorts the 

temperature contours, and essentially diminishes the temperature rise in the 

aquifers, especially in the more permeable overlying sandstone formations. 

VI. SUMMARY 

This code models fluid flow, heat transfer, and solute transport of an 

inert dissolved material. The concentration calculations for radioactive trace 

components in decay chains have been implemented in the program. 

The numerical solutions on a three~imensional x,y,z grid, or a two­

dimensional r,z grid, are obtained by a finite-difference method. Different 

choices of weighting schemes in space, differencing schemes in time, and 

matrix solvers are available. Automatic time step control is used. The code 

can handle various aquifer boundary conditions and wellbore treatments but it 

a thorough familiarity with detailed procedures for setting up data 

and a full understanding of the model 1 s capabilities. 

The code has been used for geosphere transport analyses and in salt 

repository far-field studies. Recent applications of this code to different 

formations will be of interest for repository studies. 
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MODEL OF COATS 

This is a finite~difference program for three-dimensional, two-phase, 

steam-water flow and heat transfer. The model is designed for geothermal 

well and reservoir simulations. Two-phase well testing analysis and natural 

convection in fractured matrix geoth~rmal reservoirs have been modeled. The 

model is described in Coats (1977), Coats and others (1977), and Aydelotte 

(1980). 

I. GOVERNING EQUATIONS 

In this model, the primary equations of mass balance and energy balance 

are expressed in terms of pressure and temperature for single-phase regions 

containing either liquid water or superheated steam, and in terms of pressure 

and saturation if both liquid phase £ and vapor phase v are presented. In 

two-phase mixtures, the temperature is determined by the pressure, T = T
8

(P), 

where the subscript S denotes the saturated condition. 

The mass balance equation for combined liquid and vapor phases is: 

5I, Jl, 
• ( VP - p g\7D) + .(VP - p gVD) v v J 

In this model, the capillary pressure difference between vapor phase pressure 

Pv and the liquid phase pressure Pi can be taken into account. The liquid 

Jl, 5I, v 
phase pressure P is expressed as P = P - P , where the capillary pressure 

c 

P is a single-valued function of vapor saturation S v. The saturations are 
c 

related by SJl, + sv = 1. 
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The energy balance between the change of internal energy U and the net 

flux of enthalpy H is: 

The potential and kinetic energy terms are ignored. 

Thermodynamic and Constitutive Relationships 

For the evaluation of the fluid properties, the model uses steam tables 

for two-phase mixtures and formulas for single-phase regions. The Steam 

£, v 
Tables of Keenan and others (1969) are used for the internal energy U , u and 

the density PR,, pv as single-valued functions of temperature in the two-phase 

region. For the single-phase liquid water, U~ is assumed to be a single-valued 

function of temperature. The density is calculated as 

~ 
p
8

(T)s(T) is the compressibility, with the temperature dependence of the func-

tion s(T) determined from a tabulation of specific volume in the Steam Tables. 

For the steam phase: 

where the heat capacity cv is constant. 
£, v 

The viscosities Jl and Jl are eval-

uated as single-valued functions of temperature equal to their respective 
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saturated values. 
a a 

The enthalpies H are related to the internal energies u 

a a 
and the densities p by the definitions H 

a v a v 
U + P /P • The model uses P 

as the pressure variable in all relationships. 

In addition to the fluid properties, the following material properties 

v v v also depend on the variables P ,T or P ,S • The porosity is calculated from 

where the constant ~p is the compressibility of pores. The reservoir thermal p 

r r 
conductivity KT and the rock heat capacity P c are independent of the pres-

sure, temperature, and saturation. 

The relative permeability k~ or kv at a given saturation and pressure is 
r r 

-n -
calculated from the formula k = k S , where S is the normalized saturation, 

r rr 

n is a pressure-dependent exponent, and k is the value of relative permea­
rr 

bility at S = 1. One example of the relative permeability curves used in the 

model is: 

Jl, [st -0.2 J 2 
kv = o.s [ 1 sv r k = 

1 - 0.2 
and 

- 0.2 ; r r 

Jl, kv with an irreducible liquid saturation s = 0.2, and with = 0.5, 
r rr 

Ji, v 
n = n = 2. 
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II. NUMERICAL SOLUTIONS 

Finite-Difference Method 

The governing equations are solved by the finite-difference method for a 

grid in three-dimensional x,y,z-coordinates or r,6,z-coordinates. The vari-

ables (Pv, T, or Sv) at grid blocks i,j,k are algebraically connected to the 

adjacent blocks i±1,j,k, i,j±1,k, and i,j,k±1. For the interblock transmiss-

ibilities (conductances) relating the fluxes with the variable gradient, the 

interblock values of P/~ and pg are evaluated as arithmetic means of their 

values in the two grid blocks. The relative permeabilities k and enthalpies 
r 

Hare assigned the upstream value (i.e., the value at the grid block having 

the higher fluid potential). 

Fully Implicit Scheme 

Time is discretized fully implicitly as a first-order finite difference. 

With the transmissibilities and source terms depending on the variables, the 

implicit system of equations is nonlinear. The set of equations is linearized 

using a residual formulation with Newton-Raphson iteration. If the set of two 

nonlinear, implicit, finite-difference equations of the nodal unknown vector 

x for each grid block is as F(x) = O, the Newton-Raphson procedure 

approximates the nonlinear equations at each iteration with a Taylor series 

expansion about the old solution: 

F(x) "F!i<"l + 2: (;;; )\x~+l .. ·~)· 
l. 

The partial derivatives are evaluated at the latest iterative value X~. Each 
l. 
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nodal value of the variables is successively updated until the maximum absolute 

changes of pressure, temperature, or saturation over all grid blocks are less 

than the desired convergent criteria* Generally the tolerances of 0.1 psia, 

1°F, and 1% saturation are used* 

Matrix Solver 

The linearized system of equations is solved by the reduced-bandwidth 

direct method (Price and Coats 1974). The solver uses an alternating-diagonal 

ordering scheme for the nodal numbering to reduce the storage requirement and 

computing time in the Gaussian elimination procedure. The nodal points are 

numbered in the order 1st, 3rd, 5th, *e•u followed by 2nd, 4th, ••• , diagonal 

planes for a three-dimensional grid and diagonal lines for a two-dimensional 

grid. The ordering scheme partitions the matrix into upper and lower halves, 

with the upper half in upper-triangular form. Elimination of the upper half 

creates a lower matrix of limited bandwidth. 

III. COMPUTER CODE 

Documentation 

The code was developed by K. H. Coats of Intercomp for geothermal appli­

cations. The following code characteristics are deduced from the sample appli­

cations documented in Coats (1977), Coats and others (1977), and Aydellotte 

(1980). 
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Grid 

The grid can include blocks of zero porosity representing hard rock with 

no pressure calculated, and blocks with unity porosity representing either 

fractures or wellbores. The model applies to one~, two-, and three-dimensional 

grids in either x,y,z rectangular coordinates or r,e,z cylindrical coordinates. 

For the radial grid the geometric spacing r. = 
~ 

with a= (r jr ) 1/N for 
1 e w 

N radial increments from the wellbore radius rw to the external radius re' 

has been used in some problems. 

Material Properties 

The permeability, porosity, reservoir and overburden thermal conductivity 

and heat capacity, rock compressibility and relative permeability equations or 

data are the material properties listed in the problems modeled by this code. 

Fluid Properties 

The fluid properties are evaluated with steam tables or formulas in the 

code. No data corresponding to the fluid properties are listed in the tables 

describing the modeled problems. 

Sources and Sinks 

The model includes heat source/sink terms necessary in simulating free 

convection cells. For the production of two-phase flow, the model can either 

incorporate the wellbore in the reservoir grid system or use a wellbore model. 

The implicit well treatment with small wellbore blocks can automatically 

model the crossflow between open layers and reverse flow from wellbore to 
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some of the layers in a producing well. However the small volumes of the 

wellbore blocks may limit the time step sizes. 

The two-phase flow, vertically within or laterally from the column of 

wellbore grid blocks, also requires special modeling treatment. At normal 

rates of geothermal wells, turbulent flow is fully developed in the wellbore 

and the no-slip two-phase flow is a good assumption. The no-slip condition 

with volumetric fractional flow equaling saturation can be modeled either with 

vertical pipe flow correlations or wiL~ the usual Darcy flow expressions mod­

ified by pseudo relative permeabilities. 

To avoid the small volume blocks, a wellbore model can be incorporated in 

the code to allow the use of grid blocks of large areal dimensions enclosing 

the wells. The implicit treatment of a well produced at a given target flow 

rate from a multilayer reservoir is very complicated when the wellbore 

pressure is not low enough to allow free-flowing and to sustain deliverability. 

The difficulty is due to the interdependence of the flow rates of different 

layers through the wellbore pressure drop. A significant simplification 

results if the wellbore pressure differences between layers are treated 

explicitly. The various implicit and semi-implicit treatments of the wellbore 

model were discussed in detail by Coats (1977). 

Initial Condit~ons 

The initial pressure, temperature, and saturation are listed in the 

tables describing the modeled problems. 
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The heat transfer above and below the reservoir are included in the mod­

eling of natural convection in the permeable formation. The lateral water 

influx from an extending beyond the reservoir grid is treated with the 

Carter and Tracy (1960) or simpler approximations. 

Large time steps are used in most of the modeled problems to demonstrate 

the stability of the implicit formulation. 

Output 

Pressure, temperature, saturation, quality, and flow rates in different 

directions are tabulated or plotted to present the modeling results. 

IV. VALIDATIONS 

The code was developed with the hope that the implicit model formulation 

would give unconditional stability with no time-step restrictions other than 

that imposed by time-truncation error. A number of problems have been run to 

evaluate the stability and time-step tolerance and to compare the numerical 

results with analytic solutions, other numerical solutions, and laboatory 

experiments. The problems are listed below. 

(a) Well Deliverability: A radial problem with nine grid blocks was used to 

compare the calculated deliverability with an analytic solution that was 

derived for two-phase flow, taking into account the water flashing and 

steam expansion between the wellbore and the external boundary (Coats 

1977). 
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(b) Drawdown Test: The wellbore pressure drop was matched with the solution 

of a two-phase drawdown test presented by (1978) for a well produced 

at a constant mass rate from an initially undersaturated reservoir. 

(c) Saturation Distribution: The calculated saturation values over a two­

dimensional grid were compared with the numerical results of Toronyi and 

Farouq Ali (1977) and Thomas and Pierson (1978) for a reservoir produc­

tion problem for a vapor-dominated reservoir. 

Implicit Stability and Throughput Ratio 

(a) One-dimensional Test: The radial problem with nine grid blocks was also 

used to test the stability and time-truncation error. The implicit 

stability is expressed in terms of a throughput ratio which is defined as 

the total volume of flow passing through the grid block in one time step 

divided by the volume of the block. The throughput ratio is proportional 

to the maximum stable time step. For an acceptable time-truncation error 

with time step of 1000 days, the throughput ratio with implicit treatment 

is two orders of magnitude larger than that with semi-implicit treatment. 

(b) Two-dimensional Test: Two-dimensional problems are generally better 

indicators of model competence than one-dimensional tests. A five-layer, 

cylindrical grid with wellbore included was used to achieve a stable 

throughput ratio the order of 108 and producing cell steam saturation 

changes of 80 to 100%. The corresponding semi-implicit treatment can 

achieve only a 20,000 throughput ratio and 3 to 10% saturation changes. 

It is of interest to note that this five-layer problem has employed a 

pseudo straight-line capillary pressure curve corresponding to the thick­

ness of one layer. 
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(c) Partial Perforation Effect: The two-dimensional grid was also used to 

study the effects of perforation with well completion (open) 

interval shorter than the reservoir thickness. The heat and mass pro­

ductions are sensitive to the location of the open interval. Only the 

portion of the reservoir formation above the open interval can be effec= 

tively drainede 

Stanford Bench 

The code was used to simulate a two-phase depletion experiment in a syn-

thetic porous-medium core (Kruger and Ramey 1 TO supplement the 

mental information, hypothetical relative permeability curves and steady-state 

boundary heat-transfer equations (Thomas and Pierson 1978) were used to yield 

good agreement between the calculated and the measured profiles of pressure 

and temperature. The saturation profile was also compared with the results of 

the implicit pressure-explicit saturation model of Thomas and Pierson. The 

discrepancies between the results may be due to the difference in the implicit= 

explicit evaluation of saturation-dependent coefficients. 

V. APPLICATIONS 

The model has been applied to fractured-matrix reservoir performance, 

well test analysis, extraction of energy from hot dry rock, and natural con­

vection problems in fractued geothermal reservoirs. 

Fractured-Matrix 

A cylindrical discrete fracture model was simulated. In this model, the 

set of horizontal fractures sandwiched between matrix blocks was connected by 
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a cylindrical vertical fracture. A large permeability was used for the frac­

ture to render viscous forces negligible relative to the gravitational forces. 

A zero capillary pressure was used for the fractures and a linear relation for 

the porous medium. Because of the discontinuity in the capillary pressure 

between blocks and horizontal fractures, there was poor recovery of water from 

the matrix blocks. The horizontal fracture rapidly approached 100% steam. 

The water drained vertically downward from the blocks into the horizontal 

fracture instead of moving laterally into the vertical fracture. In compar­

ison with porous-medium results, the two-phase transition zone is lower for 

the fracture-porous simulation. 

Well Test 

(a) Fracture Effects: Simulation of a single-phase flow, pressure drawdown 

test in a tight formation with horizontal fractures showed upward concave 

curvature in the semilog plots of pressure drawdown versus time. This 

departure from the linear curve is due to the vertical flow from the 

matrix into the fractures. The degree of the upward curvature increases 

with decreasing matrix permeability and decreasing horizontal fracture 

spacing. 

(b) Two-phase Effects: The large apparent compressibility due to the steam 

phase and the heat transfer between the flowing fluid and the rock are 

two problems encountered in two-phase well-testing solutions. This 

geothermal reservoir and wellbore model was used in the history-matching 

simulations for test wells in Cerro Prieto, Mexico, and in Hawaii. The 
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difficulties associated with simulation of the fracture effects in two­

phase geothermal well tests were studied (Aydelotte 1980). 

Hot Rock 

A 5 x 5 x 5 grid was used to simulate a vertical fracture imbedded in a 

hot dry rock formation. In the 5 x 5 fracture plane, cold water was injected 

in the lower portion and hot water was produced in the upper corner. The 

fracture permeability was varied over a number of runs from 10 darcies to 

800,000 darcies. The fracture permeability had no effect on calculated energy 

recovery and producing well temperature but had remarkable effect on the flow 

patterns. Circulatory convection cells do not appear for permeabilities less 

than 100,000 darcies but complex flow distribution and laterally alternating 

temperature changes exist for 800 8 000 darcies. 

Convection in Fractured-Matrix Formation 

The convective cell patterns were studied for a vertical fracture of 

rectangular shape imbedded in a hard-rock formation. The heat conduction 

above and below the permeable fracture were included in the simulations. 

The temperature profiles and the cell patterns depend on the lateral extent 

of the fracture and the initial perturbations which trigger the convective 

motion. For an initially two-phase formation with a superheated steam zone 

overlying an undersaturated liquid zone, superheated steam circulatory convec= 

tion did not occur in the simulation. The conduction reduced the superheated 

temperature to saturation temperature. The steam moved uniformly upward and 

condensed at the formation top and the liquid moved downward in the saturated 

steam zone. 
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VI. SUMMARY 

This is an implicit, three-dimensional geothermal model. The model 

simultaneously solves the pressure and saturation under two-phase conditions 

and the pressure and temperature for single-phase regions. The capability to 

accomodate large time steps and small grid blocks is the aim in the develop­

ment of the highly implicit model. The various implicit and semi-implicit 

treatments associated with allocation of well rates among the multiple open 

intervals were studied. 

The influence of fractures on two-phase flows requires extensive modeling 

effort. The applications of the model to reservoir performance, energy recov­

ery, and natural convection in fractured-matrix formations indicate that the 

flow in the matrix, steam expansion, capillary pressure, and heat conduction 

in the rock are important factors for the determination of the two-phase flow 

in fractures. 
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MODEL OF FAUST-MERCER 

This is a finite-difference program for three-dimensional, two-phase, 

steam-water flow and heat transfer in porous media. The model was developed 

for geothermal simulations. An areal model has also been developed by ver-

tical integration of the three-dimensional equations and applied to the hydro-

thermal field at Wairakei, New Zealand. The models are described in Faust and 

Mercer (1979a,b), Mercer and Faust (1979), and also in Faust (1976), and Faust 

and Mercer (1975, 1976, 1977a,b). 

I. GOVERNING EQUATIONS 

In this model, there are two nonlinear partial differential equations 

formulated in terms of pressure P and enthalpy H. The first equation is based 

on the mass balance for the liquid phase £ and vapor phase v combined: 

where p is the density of the liquid-vapor mixture, p ; S£p~ + Svpv, with 

S£ + sv = 1. In the mass balance equation, the capillary pressure effects are 

neglected and the Darcy velocities for both phases are expressed in terms of a 

single fluid pressure P. The second governing equation is based on the energy 

balance for the liquid, vapor, and rock r: 
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1 1 p v v v 
where H is the total enthalpy: H = (S P H + S P H )/P. The local thermal 

equilibrium among the liquid, vapor, and rock is assumed. The lumped conduc~ 

tion~dispersion term is expressed in terms of an isotropic coefficient K and 
T 

the gradients of the temperature T(P,H)e In the energy balance equation, the 

kinetic energy (viscous dissipation), potential energy, and the pressure mat~ 

erial derivative from compressible pressure work are neglectede 

Areal Model 

From the three~dimensional equations, an areal model has been derived by 

partial integration in the vertical dimension over the thickness of the reser-

voir. The basic assumption is that the reservoir has good vertical communica-

tion and that vertical equilibrium between the steam and water is achieved. 

In the absence of significant capillary pressure, gravity segragation between 

the vapor and liquid produces a two-phase steam cap with residual water satur-

ation above the liquid water. The governing equations for the areal model are 

expressed in terms of the vertically averaged pressure and enthalpy. With the 

assumption that the pressure varies hydrostatically in each phase, the ver-

tically averaged pressure and enthalpy can be algebraically related to the 

pressure and the elevation of the interface contact. In the model, the inter-

face pressure and elevation, together with the liquid and vapor densities and 

enthalpies, are calculated from the values of the vertically averaged pressure 

and enthalpy. The mass and energy leakage to confining beds are taken into 

account, with additional mass and energy flux terms evaluated at the top and 

the bottom of the reservoir. The effects of a sloping reservoir with variable 

thickness are also included. The validity of the assumptions of the areal 

model can be checked with the three-dimensional model. 
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Thermodynamic and Constitutive Relationships 

The fluid properties of liquid water and steam are calculated from analy-

tic formulas of P and H. The analytic formulas are obtained by least-squares 

regression applied to data from steam tables (Meyer and others 1968; Keenan 

and others 1969). The derivatives of the functions are directly obtained from 

the analytical formulas. The dependence of the fluid properties on the vari-

ables is described as follows: The saturated liquid enthalpy Hi and the satu-

rated steam enthalpy Hv are treated as functions of pressure. Temperature is 

treated as a function of pressure and enthalpy for the liquid water region and 

for the superheated steam region, and is treated as a function of pressure in 

the two-phase region. v 1 The vapor density p and the liquid density p are con-

sidered functions of pressure and enthalpy. The liquid water saturation s 1 in 

the two-phase region is 

and 

The viscosities are considered functions of temperature. The relative permea-

bilities are: 

and 

where s is the normalized saturation: S = (S~ - s1 )/(1 - S~ - Sv) for a forma-
r r r 

tion with residual saturations s1 and Sv (Corey and others 1956). 
r r 

For the formation property, the porosity is calculated from 
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where ~p is the constant intergranular vertical compressibility coefficient. 
p 

The rock enthalpy is a linear function of temperature, given by: Hr = crT. 

II. NUMERICAL SOLUTIONS 

Finite-Di!ference Method 

'I'he finite-difference method is used for solving the unknowns on a rec-

tangular, irregular grid. For the evaluation of the interblock transmissibil-

ities (conductances), the density, the viscosity, and the derivatives (OTjdp)H 

and ( d'I'/ CiH) P are evaluated as arithmetic averages of values in adjacent blocks. 

Relative permeabilities and enthalpies are assigned the upstream value. Perm-

eability, thermal conductivity, and other space-dependent terms are determined 

as harmonic means of the values in adjacent blocks. 

Implicit Schemes 

The system of 2N nonlinear implicit finite-difference equations over N 

grid blocks is solved by Newton-Raphson iteration in the three-dimensional 

version of this model. Each grid block is connected to six adjacent blocks, 

so that each equation has a maximum of 14 unknowns (7 pressure, 7 enthalphy). 

The set of nonlinear equations is approximated with a Taylor 1 s series expan-

sion about an assumed solution. The linearized matrix equation is solved and 

iterated. Convergence is checked by calculating global mass and energy bal-

ance errors and comparing them to specified criteria. The three-dimensional 

model is fully implicit with Newton-Raphson iteration applied to the transmis-

sibility, accumulation, and source terms. For the two-dimensional areal model, 
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only accumulation and source terms are treated implicitly; the transmissibil-

ity terms are treated by the Picard iteration scheme to update each iteration. 

Matrix Solvers 

For the three=dimensional model, the nonsymmetric, linearized matrix 

equations are solved by the slice-successive overrelaxation iterative method 

imbedded in the Newton-Raphson iteration. Each slice or matrix block corre-

sponds to a vertical cross section of the grid. Each slice has 10 unknowns 

per equation, and the matrix is solved directly by Gaussian Doolittle elimina= 

tion. The remaining 4 (out of 14) coefficients are treated iteratively. The 

bandwidth of the matrix equation for each slice is approximately four times 

the number of horizontal layers. A convergence criterion of 0.001 is used on 

k 1 . k 1 
the maximum fractional changes in pressure (6P /~P ) and 1n enthalpy (dH /dH ) 

over the grid block in the kth iteration. An overrelaxation parameter between 

1.0 to 1.7 is normally used. 

For the two-dimensional areal model 0 the use of Newton-Raphson iteration 

on only the accumulation and source terms allows the reduction of the 2N x 2N 

matrix equation to two N x N symmetric matrix equations after Gaussian elimi-

nation to triangularize the 2 x 2 nodal equations (Coats and others 1974). 

The symmetric equations are solved using Gaussian Doolittle decomposition with 

the alternating direction D4 ordering scheme (Price and Coats 1974). 
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III. COMPUTER CODES 

Documentation 

The model was developed at the u. s. Geological Survey by c. Faust and 

J. Mercer. The user's manual and the Fortran IV code listing of a two-dimen­

sional version is in Faust and Mercer (1977b). The following code character­

istics are mainly for the two-dimensional areal model. 

Grid 

The reservoir can be simulated either with a nonuniform x,y,z grid or an 

areal x,y grid. For the two-dimensional model, the reservoir thickness can be 

specified individually for each areal block. 

Material Properties 

For the two-dimensional model, the x and y permeability and the initial 

porosity can be specified for each areal block. Other material properties 

required for the simulation are the reservoir thermal conductivity, confining 

bed thermal conductivity, rock specific heat, rock density, and reservoir 

compressibility. 

Fluid 

1be fluid properties are evaluated with regression formulas which are 

based on steam table data for a temperature range of 10°C to 300°C. No data 

corresponding to the fluid properties are required in the input. For the two­

dimensional model, the fluid properties are assumed either to be uniform with 

depth or to be determined with the vertical equilibrium condition. 
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Sinks 

The strength of fluid source/sink is specified for each well block$ 

Conditions 

Although the unknown dependent variables are pressure and enthalpy, the 

user can read in either initial pressures and temperatures or initial pressures 

and enthalpies. If temperatures are read, they are converted in the program 

to enthalpies$ If the initial conditions of the reservoir are two-phase, the 

enthalpies must be read in. 

Boundary Conditions 

The loss and gain of heat to the base and cap rock are incorporated into 

the reservoir model. The one-dimensional, heat-conduction equation is solved 

at each grid block for each iteration. The confining bed thickness is divided 

into ten linear elements that double in size with distance from the reservoir 

boundary. The temperature difference across the small element adjacent to the 

reservoir is used to compute the heat flux through the cap rock-reservoir 

boundary. The heat leakage to the base rock is assumed to be equal to the 

flux computed at the caprock-reservoir boundary. 

Time S 

The size and the maximum number of time steps are specified by the user. 

The mass and energy balance is computed for each time step. 

Output 

On a successful run, the pressure values, the enthalpy values, and the 

mass and energy balance are printed every time step. In addition, the water 

saturation, temperature, and density can be printed at selected steps. 
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IV. VALIDATIONS 

A number of problems have been simulated to validate the model and to 

compare different numerical methodologies. The primary objective of many of 

the simulations was to test the validity of the vertically averaged model. 

ection Solution 

The temperature profile of the injection front was compared with the ana­

lytic solution of Avdonin (1964) for linear, single-phase flow through a con­

fined aquifer. Both midpoint weighting and upstream weighting of enthalpy were 

used in the simulation. The midpoint weighting approximates the temperature 

front well but exhibits oscillations behind the front. Upstream weighting 

smears the front out by numerical diffusion and does not exhibit oscillations. 

It was also noted that the finite-element results with linear, quadratic, and 

hermite cubic basis functions all exhibit oscillations and produce a steeper 

front than the finite-difference method for this problem. 

Stanford Bench Experiment 

Experimental data obtained in a synthetic sandstone core (Kruger and 

Ramey 1974) were used to verify the models for two-phase problems. In this 

verification an implicit, one-dimensional finite-element model is used with 

upstream weighting for the relative permeabilities and diagonal lumping for 

the accumulation terms. To accomodate the boundary conditions not available 

in the experimental data, a steady-state conductive heat flux was assumed at 

the sides of the core (Garg and others 1975b). The calculated temperature 

profiles were shown to be insensitive to variations in the form of the rela­

tive permeability functions. 
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Justification of Vertically Integrated Model 

(a) vertical Equilibrium Assumption: A hypothetical one~dimensional model 

with 8 grid blocks was compared with cross section models of either 8 x 6 

or 8 x 10 grid blocks. For the one~dimensional grid, the thermodynamic 

properties were assumed to be either vertically uniform or in vertical 

equilibrium. It was shown that the vertical~equilibrium model reproduced 

the two-dimensional results better than the uniform model in simulating 

the two~phase pressure depletion and saturation change. The vertical­

equilibrium model works best for reservoirs less than 500 m thick with 

relatively high permeability and a thin steam cap. It can also be 

applied to problems with vertical to horizontal anisotropy when permea­

bility is sufficiently high. 

(b) Reservoir Depletion: An 8 x 10 areal model for a heterogeneous reservoir 

of variable thickness was compared with an 8 x 10 x 5 three-dimensional 

model. The two models gave similar results showing rapid pressure de~ 

cline and two-phase development for a reservoir without mass recharge or 

reinjection. 

V. APPLICATIONS 

The areal model was applied to the hydrothermal field at Wairakei, New 

Zealand. Steady-state behavior was reproduced and used as initial conditions 

for a history match from 1953 to 1973 and a prediction from 1974 to 2000. 

There are 150 blocks covering an area of approximately 74.5 km2. The 

reservoir model of variable thickness is overlain and underlain by leaky 
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confining beds. The steady~state simulation matched the observed direction 

and rate of natural discharge by adjusting the pressure distribution and the 

vertical permeability through the upper confining bed. The temperature dis~ 

tributions are considered known from downhole temperature measurements. The 

steady~state modeling results indicated that portions of the reservoir had a 

steam cap prior to exploitation. 

To simulate the transient effects of exploitation, well discharge rates 

were incorporated into the model. In addition to the steady~state leakage, 

transient recharge through underlying confining beds was required to match the 

slow decline of pressure data. The remaining discrepancy between the location 

of the observed and the computed maximum pressure drop was attributed to 

possible reduction in the permeability associated with formation compaction or 

subsidence. As production progressed, the modeling results indicated that the 

steam cap increased both areally and in thickness. When the contact between 

the two-phase zone and the single~phase (liquid) zone dropped below the open 

intervals of the wells, a mixture of steam and water was removed from the 

reservoir and reservoir temperature dropped. 

The predictive simulation indicated that the field could maintain produc~ 

tion rates to the year 2000. The main uncertainties in the prediction are due 

to the lack of information on the leakage properties of the confining beds. 
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VI. SUMMARY 

This is a geothermal reservoir model formulated in terms of fluid 

pressure and enthalpy for two-phase flow in porous media. A three-dimensional 

version has been used mainly to validate the assumptions used in the verti­

cally integrated, two-dimensional, areal model. The areal model assumes 

vertical equilibrium (gravity segregation) between steam and water and can be 

applied to reservoirs with good vertical communication. 

The applications of the areal model to the hydrothermal field at Wairakei, 

New indicate that the two-phase pressure decline in a geothermal 

reservoir is sensitive to the recharges through the confining beds. Although 

the computed results match observed data over 20 years, the long-range predic­

tions over 20 years may be unreliable due to the lack of information on the 

of the confining beds. 
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MUSHRM 

MUSHRM (MUlti-~pecies ~ydrothermal Reservoir Model) is a finite-differ-

ence program for the three-dimensional, two-phase, multicomponent fluid flow 

and heat transfer in porous media. Different equation-of-state packages have 

been developed to evaluate the effects of salt precipitation around geothermal 

wells and of methane evolution in geopressured reservoirs. The model has been 

applied to history matching of the Wairakei geothermal field and generic stud-

ies in other geothermal systems. Interactions between the fluid mass-energy 

transport and the rock stress-strain response have been studied. The model is 

described in a number of papers {Brownell and others 1977; Garg and Pritchett 

1977, 1978; Garg and others 1975b; Pritchett and Garg 1978; Pritchett and 

others 1976a, 1980; Riney and others 1977), and in the series of reports on 

geohydrological environmental effects of geothermal production (Pritchett and 

others 1975, 1976b; Pritchett 1978) and on geopressured geothermal reservoir 

simulation (Garg and others 1977b, 1978, Pritchett and others 1979). 

I. GOVERNING EQUATIONS 

In this model, the governing equations are formulated in terms of fluid 

density p and internal energy u. The mass balance equation is: 

The general form of the energy balance equation in this model is: 

_ 51,-fi, v-v Ji, Ji,-51, v v-v -
-V.(~S v P + ~S v P) + ~(S p v + S p v ).g. 
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The last two terms on the right-hand side of the energy equation are the 

pressure-workjviscous-dissipaton contributions to the energy balance, which 

are usually neglectede Local thermal equilibrium is assumed among the liquid 

phase £, vapor phase v, and rock r. The capillary pressure difference between 

liquid and vapor is neglected. Darcy 1 s equation for the fluid phases is 

0!-
• ( Vp - P g) u 

i v i uv In the equations, the phase densities P , P u and internal energies U , can 

be expressed in terms of the mixture density p, internal energy U, steam qual-

ity Qv (mass fraction of vapor), and vapor saturation Sv (volume fraction of 

vapor) as: 

Jl, 

p ( ~ Qv); v - v pJL p "" p = 
sv sv 

Ji, vu uv ( 1-Q v) u u = u - Q vap = u + vap 

where u is the heat of vaporization. vap 

Equation-of-State Packages 

Several equation-of-state subroutines have been developed for single- or 

multiphase and single- or multicomponent systems. For two-phase flow of vapor 

and liquid water, the independent variables, or calling arguments, are the 

fluid density p and the internal energy u. The equation-of-state package 

1 f h t t 1
. v . v returns va ues or t e pressure P, empera ure T, qua ~ty Q , saturat~on S , 

heat of vaporization U , derivatives of P, T, U with res~ect to P and U, 
~p ~p 
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i v i v 
viscosities ~ , ~ , and thermal conductivities KT, KT. The liquid and vapor 

conductivities are used in determining the mixture thermal conductivity KT. 

Within the package, quantities are calculated by interpolation and extrapola-

tion of tabular values and by analytic equations derived by fits to data. The 

phase diagram is divided into computational regions. For both liquid and vapor 

phases, the pressure and temperature at a given density are calculated from: 

p - = ~. (U - U ) ; ( aP) 
ilU p ref T - T . = (E) ( p - p ) • 

ref 3P p ref 

The P f' U f' and T f are functions of specific volume along reference re re re 

curves. Along the saturation curve separating the liquid and vapor from the 

two-phase region, the tabular values from ASME Steam Tables (Meyer and others 

1967) are used for the reference values. Along the isobars of P = 1 bar for 

single-phase liquid and vapor, and on the Hagoniot curve for compressed liquid 

with density greater than that at 25°C and 1 bar, analytic formalas are used 

for the reference values. The coefficients (ilP/3U) are determined by tabular 
p 

fitting in the P - U diagram above the saturation curve. The coefficients 

(ilT/oP) are given as functions of the specific volume. With (P,T) determined 
p 

from (P,U), the viscosities, thermal conductivities, and other fluid proper-

ties can be calculated with analytic or tabular fits. 

For water-salt (NaCl) solutions, the salinity is an additional indepen-

dent variable. For most of the fluid properties, analytic correction factors 

as functions of salinity are included in the package. In order to determine 

the mass fractions of solid, liquid, and vapor components, the solubilities of 

salt in the liquid and vapor phases are calculated. If the input salinity is 

greater than the saturation value, solid salt will precipitate out of solution. 
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The mass fraction of solid precipitate is determined by an iterative procedure. 

The internal energy of solid salt is approximated as a function of temperature 

only, and the specific volume is calculated as a function of pressure. 

For applications in geopressured reservoirs, a package for water/methane 

mixtures has been developed. The water (or brine) is assumed to be present 

only in the liquid phase. The methane is either dissolved in the liquid or in 

gaseous phase in equilibrium with a saturated solution. The mass fraction of 

methane is the additional calling argument. Within the package, quantities 

are calculated as functions of pressure, temperature, and/or salinity. The 

solubility of methane declines with increasing salinity. 

Constitutive 

When detailed experimental data are unavailable, the relationship of 

Budianski (1970) is used to approximate the mixture thermal conductivity KT: 

The rock internal energy is assumed to be Ur r 
= c T, where is the specific 

heat capacity of the rock. 

The relative permeabilities may be represented by the equations of Corey 

and others (1956): 

and 

where the normalized saturation is 



1 -

with residual saturation st and sv. 
r r 
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The permeability k as a function of porosity $ is approximated by the 

following relation: 

where n and m are empirical constants. 

For the case when ~ does not appreciably depend upon the shear stress, 

~ is expressed as a function of effective stress (confining pressure P minus 
c 

fluid pressure P) and temperature T 

where K, Kr are the bulk modulus of porous rock and of rock grain, respective-

ly, and n, nr are the coefficients of linear thermal expansion. In general, 

the bulk modulus K depends upon P - Po the loading direction, and the past 
c 

stress history. 
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II. NUMERICAL SOLUTIONS 

Finite Difference Method 

The finite difference method is used. The advection terms are treated 

with upstream weighting technique. 

Alternating Direction Implicit Method 

For the solution of a multidimensional problem in a time step, the alter= 

nating-direction implicit (ADI) method is used. The two-or three dimensional 

problem is reduced to two or three one-dimensional problems. The series of 

one-dimensional implicit equations are solved iteratively until some preset 

convergence criterion is met. 

Nonlinear Iteration 

Within each one-dimensional problem, the coupled, nonlinear equations 

are solved by an iterative method. The Newton-Raphson procedure is employed 

to accommodate the nonlinearity, and the oscillations associated with crossing 

the steam-water saturation line are damped by requiring that the amplitude of 

each oscillation decreases by a specifified amount (see Pinder 1979 for a 

communication with Pritchett). 
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III. COMPUTER CODE 

Documentation 

The code was developed by J. w. Pritchett and s. K. Garg of Systems, 

Science and Software for geothermal and geopressure simulations. The code 

characteristics deduced from the sample applications are listed below. 

Spatial Grid 

The model can be applied to one-dimensional (linear, radial, or spher­

ical), two-dimensional (areal, vertical, or axisymmetric), and three-dimen­

sional (rectangular) coordinate systems. For one- or two-dimensional modeling 

of an aquifer, the layer thickness and dip can be specified for each grid. 

Material 

For each zone, the density, heat capacity, thermal conductivity, initial 

porosity, initial directional permeabilities, relative permeability curves, 

porosity-permeability relation, bulk moduli (loading, unloading), shear mod­

ulus, and thermal expansion coefficient can be independently specified. 

Fluid Properties 

The following constitutive packages are available: liquid water (one 

component, one phase), liquid waterjsteam (one component, two phases), liquid 

water/steam/dissolved NaCljprecipitated NaCl (two components, three phases), 

liquid water/dissolved methane/free methane gas (two components, two phases), 

and liquid water/dissolved NaCl/dissolved methane/free methane gas (three com­

ponents, two phases). 
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Sources and Sinks 

Several studies were made for the treatment of well blocks with dimen­

sions much larger than the diameter of the well contained within the 

block. For single-phase flow, the dependence of the wellbore pressure on the 

shape of the grid block (radial or rectangular) 9 the type of mesh (uniform or 

nonuniform) employed, and the character of the spatial discretization scheme 

were examined (Pritchett and Garg 1980). For two-phase flows, semianalytic 

equations were derived for ideal two-phase systems in terms of constitutive 

parameters at the boiling point (Pritchett 1979). An isothermal, two-phase 

wellbore model was used for the simulation of discharge of methane from geo­

pressured fluids produced from muiltiple zones. The pressure distribution in 

each open inteval were assumed to be hydros~atic (Pritchett and others 1979). 

Initial Conditions 

The temperature and pressure are specified in the sample problems. 

Conditions 

The boundary condition options are (i) impermeable and insulated (or 

prescribed heat flux or temperature), (ii) prescribed mass flux and insulated 

(or prescribed heat flux or temperature), and (iii) prescribed pressure/heat 

content. It is of interest to note the difference in specifying the produc­

tion and the injection conditions. If the mass flow out of the system, the 

heat content (internal energy per unit mass) of the fluid being extracted is 

the same as that in the zone from which it is being removed. On the other 

hand, if fluid flows into the system, the heat content of the injected fluid 

must be supplied to complete the specification of the boundary condition. 
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Time 

The time steps can be automatically determined by the code. 

Output 

Results of computations are printed out at specified computational cycles. 

IV. VALIDATIONS 

Stanford Bench 

TWo experimental runs were simulated to test the calculated temperature 

profiles. These are (i) injection of cold water into a synthetic sandstone 

core containing hot water, and (ii) production of hot water and steam from a 

system containing pressurized water. To supplement the experimental data, 

empirical values of heat transfer coefficients through the boundaries and ther­

mal properties of sandstone in the core were assumed (Garg and others 1975). 

Grid Orientation Test 

A 5 x 5 and a 7 x 7 areal grid with orientations differing by 45° were 

simulated for a five-spot injection into a producing hot-water field. The 

"five-spot" pattern is a checkerboard-like system with alternating injection 

and production wells. The simulated results indicate that the numerical scheme 

employed is free of grid orientation problems (Pritchett and others 1976b). 

Pressure Drawdown Solution 

The pressure drawdown from a two-phase reservoir were simulated with a 

50-block radial grid. The values of mobility computed from the slope of the 

P-log(t) results agree with the actual values in the well blocks (Garg 1978). 
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V. APPLICATIONS 

The code has been used in theoretical studies and in field simulations. 

Reservoir vertical Fault 

A 20 (horizontal) by 6 (vertical) grid was used to simulate a shallow 

aquifer intersected by a vertical fault. The vertical boundary representing 

the fault face has specified temperature and hydrostatic pressure. The prom­

inent feature of the flow field is the strong circulation of fluid entering 

the aquifer near its upper boundary, traveling downward, and then leaving near 

the bottom. Superimposed on the dominant feature is a weak net outward flow 

toward the outer boundary and a complicated array of weak eddies (Pritchett 

and Garg 1978). 

Work and Viscous 

Numerical solutions of the steady radial temperature distribuions indi­

cate that the pressure work and viscous dissipation terms in the energy 

balance equation have negligible effects in single-phase liquid water and in 

two-phase liquid-vapor systems. For pure vapor systems, these two terms can 

produce significant variations in the computed reservoir response (Garg and 

Pritchett 1977). 

Production/Reinjection 

A hypothetical bounded hydrothermal reservoir was simulated for the gross 

thermal power output for different production and reinjection strategies. The 

production takes place from a central vertical crack and the fluid reinjection 
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is into two similar cracks located at the reservoir periphery. The results 

show that injection helps to maintain the reservoir pressure and increases the 

gross power output (Garg and others 1975b). 

Well Testing Analyses 

A one-dimensional cylindrical model and a two-dimensional axisymmetric 

model were used to simulate pressure drawdown and buildup well tests. The 

classical single-phase analytical models were shown to lead to errors in 

the permeability values inferred for the producing formation (Pritchett and 

others 1976b). 

Near-Wellbore Flashing 

A one-dimensional cylindrical model was used to examine the severe reduc­

tion of well deliverability due to relative permeability effects associated 

with two-phase flow. If the ambient fluid is salt-saturated at reservoir con­

ditions, the precipitation of salt during flashing of geothermal brine will 

plug the bores (Pritchett and others 1976b). 

Subsidence Simulations 

The reservoir model can be coupled to a rock stress/deformation program 

STAGR. The output tape from the finite-difference reservoir simulation calcu­

lations is used to derive the finite-element stress calculations. An axisym­

metric model was used to study the dependences of stress distributions and 

surface horizontal and vertical displacements on the elastic properties of 

overburden and underburden (Pritchett 1978). 
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Wairakei Geothermal Reservoir 

A one-dimensional vertical model with 22 blocks and a two-dimensional 

cross~section model with 162 blocks were used to match the production history 

of wairakei, New zealand, from 1953 to 1976. To account for the high 

compressibility and high discharge enthalpies at early production, the liquid­

dominated reservoir is believed to have contained a steam cap prior to produc­

tion. The simulations included the effects due to the recharge through the 

highly fractured interfaces between the reservoir and the underlying formation. 

The permeability values used in the models to match the production his­

tory are much higher than those measured in the laboratory. The porosities 

reflected by the reservoir performance are lower than the measured values. 

The discrepancies are believed to be indicative that the system is largely 

controlled by the fracture network. The fractures or faults may also control 

the subsidence. The laboratory-determined formation compressibility is too 

small to account for the subsidence observed. The spatial distribution and 

temporal changes of the subsidence also suggest that the subsidence is con­

trolled by a seismic slippage along preexisting buried faults. 

Salton Sea Geothermal Reservoir 

A 16 x 16 areal model was used to simulate the upper reservoir in the 

Salton Sea geothermal field, California. The simulations analyzed the effects 

of fluid reinjection and well patterns on reservoir performance (Riney and 

others 1977). 
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Geo£ressure Simulations 

Sensitivity studies were made to assess the drive mechanisms (water 

compressibility, rock compaction, and methane evolution) for geopressured 

reservoirs. Axisymmetric calculations were performed for the long-term 

production behavior of the Austin Bayou Prospect (Pritchett and others 1979). 

VI. SUMMARY 

This is a two-phase model for steam production in hydrothermal reservoirs 

and for methane production in geopressured geothermal reservoirs. The reser­

voir model can accomodate different equation-of-state packages for multiphase, 

multicomponent simulations. A nonisothermal subsidence formulation is incor­

porated in the model to couple to a stress code. The basic governing equations 

of the reservoir model are formulated in terms of fluid density and internal 

energy. The numerical solutions are obtained by the alternating-direction 

implicit method. 

The code has been extensively applied to theoretical studies and to 

field simulations. The various applications demonstrate the importance of 

the effects of fluid injection, reservoir recharge, steam flashing, methane 

evolution, and salt precipitation. The history match and the subsidence study 

for the Wairakei geothermal reservoir indicate that the coupling between non­

isothermal fluid flow and nonlinear formation deformation may be important. 
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SHAFT79 

SHAFT79 (Simultaneous Heat And ~luid !ransport) is an integrated finite-

difference program for computing three-dimensional, two-phase nonisothermal 

flow in porous media. The model is designed principally for geothermal reser-

voir simulation. It has been to history matching of the Serrazzano 

steam geothermal field in Italy and to simulations and well testings in other 

two-phase fields. The model is being used for studies of nuclear 

waste repositories, especially the pore-pressure buildup induced by a heat 

source. The various aspects of the model are discussed in Pruess and others 

(1979a-c), and Pruess and Schroeder (1979, 1980). 

Ie GOVERNING EQUATIONS 

In this model, the governing equations are formulated in terms of fluid 

density p and internal energy u. The model solves coupled mass- and energy-

balance equations of the following form: 

The mass flux F is given by Darcy's Law: 

- -a 
F"" F "' -

The energy flux contains conductive and convective terms 

G "" -K VT + 
T 

a a 
H F 
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The governing equations describe the physical systems of porous rock 

saturated with one-component fluid in liquid and vapor form. The liquid i, 

vapor v, and rock matrix r, are assumed to be in local thermodynamic equi-

librium with the same temperature and pressure at all times. The capillary 

pressure between liquid and vapor is neglected. 

Equation-of-State and Constitutive Relationships 

The description of the equilibrium thermodynamic properties of the fluid 

filling the void space is given by a fluid table inverted from the Steam Tables 

of the International Formulation Committee (see Meyer and others 1967). The 

fluid table gives all required quantities of the governing equations (temper-

T, 
. v 

heat conductivity K , liquid and ature pressure P, vapor saturat~on S , 
T 

Jl, v Jl, v Jl, 
Uv) vapor viscosities Jl ' Jl ' 

densities p 
' 

p 
' specific internal energies u p 

as functions of the two principal dependent variables (fluid density P and 

fluid specific internal energy U). The thermodynamic information, including 

all derivatives, is obtained by means of bivariate interpolation from the 

fluid table. 'l'he p,U grid is constructed in such a way that the intersections 

of the grid with the saturation line are tabulated (Pruess and others 1979b). 

This ensures that interpolation does not occur across the saturation line, 

where derivatives change discontinuously. 

For the formation properties, the porosity ~ can vary with pressure and 

temperature. All other rock properties (density Pr, specific heat cr, thermal 

conductivity KT, permeability k) are independent of temperature, pressure, or 
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vapor saturatione In most applications, relative permeabilities were obtained 

from a version of Corey's equation: 

and 

with the residual immobile steam saturation equal to zero and residual immobile 

water saturation St = 1 ~ r varying between 0.4 and Oe7. 
r 

II. NUMERICAL SOLUTIONS 

Finite-Difference 

Space discretization is achieved with the integrated finite-difference 

methode This method allows a very flexible geometric description because it 

does not distinguish between one-, two-. or three-dimensional regular or irreg-

ular geometries. Time is discretized fully implicitly as a first-order finite 

difference, resulting in the following finite-difference equations: 

( <!> p ) _ At ["' n n t V ~ n 
m 
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where n and m label the volume elements, and 

is the vector of the 2N unknowns for a system with N elements at time t+8t, 

~t is the time step, V is the volume of element n, and 
n 

Fnm = 

G 
nm 

A nm [

p - p 
a m n 

Pnm D 
nm 

a, a, 
H F 

nm nm 

are the mass flow and the energy flow 8 respectively, from element m into 

element n with interface area A over a distance D • Whereas $ can vary 
nm nm n 

with time, the apparent rock density (1 - $ )pr is constant. Different weight­
n 

ing procedures can be selected for the various "interface quantities" labeled 

with subscript nm. 

The permeability k and the thermal conductivity K are evaluated as 
T 

harmonic means of the value in adjacent elements. The fluid density p is 

interpolated spatially from that of the adjacent elements (arithmetic mean 

weighted with differences from the block centers to the interface). The 

mobilities kka,/~a, and enthalpies Ha, can be either interpolated spatially or 
r 

weighted toward those of an upstream element. 

Matrix Solver 

The finite-difference equations above are solved with the Newton-Raphson 

method. The set of linear equations arising at each iteration step is solved 

with an efficient direct solver using sparse storage techniques (Duff 1977). 
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III. COMPUTER CODES 

Documentation 

SHAFT79 and a number of associated pre- and post-processor programs are 

written in FORTRAN IVe The code is presently being used on the CDC 7600 

computers at Lawrence Berkeley Laboratory and at Sandia. Earlier versions 

have been installed on a UNIVAC 1108 and an IBM 370/168. Implementation on a 

Burroughs B-6800 is underway. The user 1 s manuals for both the SHAFT78 version 

and the SHAFT79 version are available (Pruess and others 1979a; Pruess and 

Schroeder 1980). The input consists of several data blocks which are provided 

by the user either as disk files or as data cards. Some of the data blocks 

are optional. 

Grid 

To specify the grid for irregular geometries, the following data are 

required: element volume, distances from element centers to interfaces, 

interface areas, and cosine of the angle between the gravitational acceler­

ation vector and the connecting lines between neighboring elements. The 

code can also generate internally simple regular grids in one, two, or three 

dimensions. 

Material Properties 

For each rock type, the rock density, permeabilities along the principal 

axes, rock heat conductivity, and rock specific heat are specified. The por­

osity can be evaluated as a constant or as a linear function of pressure and 

temperature by specifying the compressibility and expansivity. 
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Fluid 

The code requires an equation of state in tabular form to be provided 

through a disk file. The table can be generated by executing two programs: 

WATER for computing and tabulating the steam table equations (Meyer and others 

1967) and PROPER for numerically inverting the tables into functions of (U, p). 

For most geothermal problems within the 5°C ( T ( 400°C temperature range and 

0.5 bar ( P ( 220 bar pressure range, one can use the fluid table called 

FLUTAB3 which is available as part of the SHAFT79 program package. The rela­

tive permeabilities can be determined: (i) in the equation of state table, 

(ii) from the Corey's equation, (iii) by interpolation from tabulated array, 

or (iv) as linear functions of vapor saturation between residual immobile 

value and perfectly mobile value. 

Sources and Sinks 

The mass and heat generation rates versus time can be tabulated. For 

mass injection, the value of specific enthalpy is required. The relative 

amounts of liquid and vapor of the produced fluid in the source element can 

be determined: (i) according to relative mobilities, (ii) with the same steam 

quality as the producing element, (iii) as pure vapor, or (iv) as pure liquid. 

Initial Conditions 

The initial conditions can be converted from the user-oriented variables 

(temperature-pressure or temperature-vapor saturation) to the internal program 

variables (energy-density). At the beginning of a simulation, volume-, mass-, 

and energy-balances and averages will be computed for the various reservoir 

domains. 
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Boundary Conditions 

There is no special boundary blocks. The boundary conditions are speci­

fied through appropriately chosen elements, interfaces, initial conditions, 

and sources/sinks. 

Time Steps and Solution Control 

The array of the lengths of time steps are specified by the user. The 

user also specifies the convergence criteria for the energy equation and the 

density equations. If no convergence has been achieved the linear equa-

tions for Newton-Raphson iteration will be solved. If there is a failure in 

solving the linear equations, in computing thermodynamic parameters, or in 

converging within a given number of iterations, the time step will be repeated 

with time increment cut in half. The simulation proceeds until it terminates 

for one of several criteria: (i) number of time steps, (ii) machine time 8 

(iii) physical time. 

At the completion of a run, the results needed for a subsequent continua­

tion of the problem are written onto a disk file. The amount of printout can 

be controlled. In addition to the dependent variables and parameters for each 

element at chosen time steps, one can specify additional printout for the 

fluxes 1 transductances, flow terms, accumulation terms, sinks/sources 8 equa­

tions of state, or linear equations. Two-dimensional contour plotting is 

available for the display of results. 



216 

IVG VALIDATIONS 

SHAFT79 was validated against SHAFT78 8 which in turn was validated 

against a number of analytically solvable one-phase flow problems (Pruess and 

others 1978) 8 as well as against published numerical results for two-phase 

flow problems (Pruess and others, 1979c)e 

Single-Phase Solutions 

Linear Gas Flow: The computed pressure drops with a 30-element linear 

grid were compared with the analytic solutions of Kidder (1957)* 

(b) Theis Problem: The type curves calculated with a 15-element radial grid 

were compared with the exponential integral solution. 

Two=Phase Problems 

Areal Saturation Distribution: The calculated liquid saturation values 

over a 6 x 6 grid were compared with the numerical results of Toronyi and 

Farouq Ali (1977) for a production problem in a vapor-dominated 

reservoir. 

(b) Pressure Drawdown: The pressure drawdown with boiling near the wellbore 

was compared with the results obtained by Garg (1978) with the same 

50-block radial grid. The wellbore P versus log ) plot is indeed a 

straight line with slope determined by the total kinematic mobility. The 

simulated results also show that P versus log (tjr2) over all elements in 

the reservoiru not just the wellbore 8 is a straight line. This indicates 

that the mobilities could also be obtained from observation well data 

rather than just flowing wellbore data. 
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V. APPLICATIONS 

The code has been applied to problems in geothermal reservoir simulation, 

well testing, and nuclear waste isolation. 

Generic Studies 

(a) Reservoir Depletion: A vertical grid with 44 blocks was used to simulate 

the depletion of a reservoir with sharp steam/water interface. When steam 

is produced above the liquid water table, a two-phase layer is produced 

and the boiling front moves downward. The simulated results show that the 

top of the two-phase zone does not dry up until after the boiling point 

has reached the bottom of the reservoir (Pruess and Schroeder 1979). 

(b) Injection of cold water: The propagation of the hydrodynamic front and 

the temperature front were simulated with a 50-block radial grid for cold­

water injection into a steam reservoir. It is shown that the fronts are 

propagated according to the parameter t;r2 as is the case in pressure 

drawdown. 

(c) Fractured Reservoir: The double-porosity concept was generalized for 

numerically simulating two-phase flow in fractured porous media. A 

multiple-interacting continuum method was incorporated in SHAFT79 and was 

used in a radial grid simulation. With reservoir conditions representa­

tive of The Geysers, California, it was shown that for the cases with low 

matrix permeability, the mass flux of water from the matrix to the frac­

tures could be continuously vaporized by heat transported by conduction 

(Pruess and Narasimhan 1981). 
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Geothermal Field Simulations 

(a) Serrazzano, A three-dimensional geologically accurate mesh with 

234 irregular elements was used in the simulations that match the produc­

tion history from 1959 to 1975 for the vapor-dominated geothermal reser­

voir at Serrazzano, Italye The permeabilities and initial conditions 

were adjusted to reproduce the field observationse It is concluded that 

(i) the interface between overlying steam cap and deeper 

remains exploitation, and (ii) the reservoir boils 

approximately uniformly throughout in response to production. The 

simulation also suggests that some steam flowing to the main well field 

originates from deep fractures rather than from boiling in the two-phase 

zones modeled. The reservoir model is used to forecast production rates 

on a well-by-well basis through 1990. Additional parametric studies were 

made with this geologically accurate model on the effects of cold water 

recharge, incomplete thermal equilibration between rock and fluid, and 

depth of steam/two-phase interface (Pruess and others 1980). 

(b) Krafla, Iceland: A 7 x 14 vertical was used to simulate production 

and injection at Krafla, Iceland. It is shown that deep injection is 

preferable to shallow injection in maintaining pressure and temperature 

and minimizing vapor saturation decrease (Jonsson 1978)e 

One- and two-dimensional models were used to simulate the pressure 

changes induced by spent fuel emplacement in argillitee The pore pressure is 

shown to be sensitive to the permeability and the porosity of the backfill 
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material in the repository draft and shaft. With backfill, the pore 

pressure may exceed the local lithostatic pressure. With high~permeability, 

low-porosity backfi overpressurization can be relieved (Eaton and others 

1979). 

VI. SUMMARY 

This is a two-phase code for simulating reservoir models with an irregu­

lar mesh in multidimensional space. A multiple-interacting continua method 

has been developed recently to generalize the capabilities of this code to 

model fractured porous media. The numerical methodology incorporates the 

implicit treatment and iterative scheme to handle the nonlinear changes of 

fluid properties across the saturation line in the phase diagram. 

The history match for the Serrazzano field demonstrates the. use of a 

geologically accurate model. for two-phase reservoirs. Generic s.tudies were 

also made to gain better physical insights on the depletion of two-phase 

geothermal reservoirs and on the phase changes near the wellbores associated 

with fluid production and injection. The code has also been applied to 

simulate long-term pressure and temperature changes around a nuclear waste 

repository. 
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NOMENCLATURE 

surface area bounding a finite subdomain 

area of interface between elements m and n 

upstream weighting factor 

coefficient of concentration dependence of density, apw/ac 

coefficient of compressibility. a ~ -de/dcr' 
v 

temperature coefficient 

fracture aperture 

half-aperture. b/2 

concentration or mass fraction 

elastic tensor of fourth rank 

cohesion of fractures 

['!'] 

[L] 

[L] 

-1 
] 

compression index, slope of e versus logo' for virgin loading curve 

heat capacity per unit volume, CH = pc 

slope of e versus log k straight line 

swelling index, slope of e versus logo' in unloading or 
rebounding curve 

specific heat capacity, c = CH/p 

depth, -z 

distance between node m and node n, D = d + d 
mn mn nm 

thermal dispersion coefficient 

-1 
] 

[L] 

[L] 

[Mt - 2T _,] 

material derivative in the coordinate system attached to the 
deforming rock solid 

perpendicular distance from node n to the interface 
between elements n and m 

Young's modulus 
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void ratio vP;vro e = $/(1 - $) 

body force [Lt-2] 

gravitational acceleration, g = -gz or gVD 

enthalpy 0 H = u + P/pw 

hydraulic head, h = P'/pwg 
0 

= P/pwg 
0 

fracture-rock matrix heat transfer coefficient 

heat transfer coefficient between node m and n 

unit tensor 

modulus 

molecular diffusivity 

solute dispersivity 

hydraulic conductivity tensor 8 
""w = kP g/ll 

0 0 

"" thermal conductivity-dispersivity tensor, ~ = 

normal stiffness of fracture 

tangential stiffness of fracture 

thermal conductivity tensor 

thermal dispersivity tensor 

permeability tensor 

permeability of element m 

harmonic mean of k evaluated at the interface between 
elements m and n 

relative permeability 

length 0 half-dimension of porous medium block 

Biot constant 

[ML 

[Lt - 2 ] 

[L] 

-1 -3 -1 
t '!' ] 

[!lt\,t2 ] 

[L2t-1] 

[L 2t -1] 

[Lt _,] 

[MLt -3'!' -1] 

[ML -\ -2] 

[ML-\ 

[MLt -3'!' -1] 

[MLt -3'!' -1] 

[L 2] 

[L 2] 

[L) 



M 
c 

M c,n 

p 

p 
c 

p 
0 

pi 

Q' 
F 

q 

q' 
F 

r 

s 

s s 

s 

T 

t 
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fluid mass capacity of a finite subdomain 

fluid mass capacity of element n 

water pressure 

capillary pressure, p = pv - p£ 
c 

initial pressure, hydrostatic pressure 

incremental pressure, pressure above the hydrostatic 
pressure P - P

0 

fluid mass source 

fluid mass withdrawal rate, Q~ = 

heat source 

heat withdrawal rate, Q~ = -QH 

heat loss to surrounding strata 

Darcy's velocity 

strength of fluid source 

-Q 
F 

strength of fluid withdrawal rate, q; = -qF 

radial coordinate in cylindrical or spherical 
coordinate system 

position vector 

saturation 

irreducible saturation 

coefficient of specific storage 

acceleration factor 

temperature 

time 

time interval 

[ML-1] 

[ML -1] 

[ML-1t-2] 

[ML-1t-2] 

[ML-1t-2] 

[ML -1 t -2] 

[ML-3t-1] 

[ML -3t-1] 

[ML-1 

[ML -1 t -3] 

[ML-1t-3] 

[Lt-1] 

[t-1] 

[t-1] 

[L] 

[L] 

[L-1] 

[T] 

[ t] 

[ t] 
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stability limit of time constant of element n [t] 

u internal energy, U = H - P/P 

u . interface transmissibility between nodes i+1,j,k and i,j,k [Lt] 
i+1/2,J ,k 

u 
m,n 

u 

v 

v 

y 

z 
m 

m a 

fm 
a 

interface conductance between elements m and n 

solid displacement vector 

fluid velocity within fractures or pores 

volume of a finite subdomain or element 

horizontal coordinate 

horizontal coordinate 

vertical coordinate, with z = 0 at the ground surface 
or water table 

z of element m 

longitudinal dispersivity 

transverse dispersivity 

Biot 0 s coupling constant for fractures 

Biot 0 s coupling constant for rock medium 

fracture-porous matrix fluid mass transfer coefficient 

compressibility of water to head change, a: = (1/pw)(opw/ohp) 

compressibility of water to pressure change, 

~w = (1/pw)/(op/oP) 
p 

compressibility of pores to head change, 

6~ "' o<iJ/ohP 

compressibility of pores to pressure change aP "' o~/oP p 

expansivity of water to temperature changeu 
w w aT"' (-1/p)(ap ;aT) 

[L] 

[L] 

[L] 

[L] 

[L] 

[L] 
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e 

\) 

w 
p 

p 
m,n 

-a 

r 
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fracture spacing 

volumetric strain of the solid skeleton 

strain tensor 

linear thermal expansivity 

angle of friction of fractures 

time differencing interpolation factor 

parameter for compensating entry and exit effects at 
tubule intersection 

coefficient of dynamic viscosity of water 

constant viscosity 

Poisson's ratio 

seating stress 

mass density of water 

reference mass density of water (at P and T ) 
0 0 

mass density of rock 

harmonic mean of p evaluated at the interface 
between element m and n 

total stress tensor 

normal stress (overburden) 

porosity of pores or fractures 

boundary porosity or Bishop's coefficient, relating 
effective stress and water pressure in unsaturated zone 

X. + hpdx/dhp parameter correlating changes in effective 
stress and water pressure 

transient mass flux 

[L] 

[ML -1 t -2] 

[ML-3] 

[ML -3] 

[ML -3] 

[ML -3] 

[ML -1 t-2] 

[ML-1t-2] 

[ML-1 
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unit vector along the direction of a tubule 

v spatial gradient differential 

Superscripts 

b boundary 

d discrete fracture 

f fractures 

fm fracture-porous medium interface 

j phase index, i,j = f or m 

k iteration 

1 water 

m porous medium blocks, including the rock matrix and the pore water 

p pores in the porous medium block 

r solid rock 

v water vapor 

Subscripts 

D 

F 

H 

m 

n 

p 

s 
T 

water 

fluid 

dispersion 

fluid 

heat 

node index 

node index 

index, a ... w, 

reference value at P0 and T0 

pressure 

saturation 

temperature 

or v 



ADI 

AECL 

CRRE 

D&M 

FD 

FE 

IFD 

KBS 

LBL 

NRC 

ONWI 

SOR 

s3 

UCB 

WIPP 
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ABBREVIATIONS 

Alternating direction implicit method 

Atomic Energy of Canada, Limited 

Army Cold Regional Research Engineering Laboratory, Hanover, 

New Hampshire 

Dames and Moore, Los Angeles, California 

Finite-difference method 

Finite-element method 

Integrated finite-difference method 

Swedish Nuclear Fuel Safety Project, Karnbranslesakerhet 

Lawrence Berkeley Laboratory, Berkeley, California 

Nuclear Regulatory Commission 

Office of Nuclear Waste Isolation, Department of Energy, 

Columbus, Ohio 

Successive-overrelaxation method 

System, Science and Software, La Jolla, California 

University of California, Berkeley, California 

Waste Isolation Pilot Plant 
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